-
Notifications
You must be signed in to change notification settings - Fork 0
/
turnkeylaser.py
1438 lines (1161 loc) · 65.4 KB
/
turnkeylaser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
"""
TurnkeyLaserExporter
-----------------------------------
Maintained by Turnkey Tyranny (https://github.com/TurnkeyTyranny/laser-gcode-exporter-inkscape-plugin)
Designed to run on Ramps 1.4 + Marlin firmware on a K40 CO2 Laser Cutter.
Based on think|haus gcode inkscape extension
Based on a script by Nick Drobchenko from the CNC club
***
Copyright (C) 2009 Nick Drobchenko, nick@cnc-club.ru
based on gcode.py (C) 2007 hugomatic...
based on addnodes.py (C) 2005,2007 Aaron Spike, aaron@ekips.org
based on dots.py (C) 2005 Aaron Spike, aaron@ekips.org
based on interp.py (C) 2005 Aaron Spike, aaron@ekips.org
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
"""
"""
Changelog 2015-02-01:
* Beginning of the project. Based on a fork from ShinyLaser(https://github.com/ajfoul/thlaser-inkscape-plugin)
Changelog 2015-02-16:
Added an option to export as Marlin or Smoothie Power levels
Changelog 2015-03-07:
Added capability to pick out power, ppm, feedrate etc from the layer names
Added code to support Pulse Per Minute burning or continuous burning. Will default to continuous.
M649 S100 L300 P10 - Set Laser settings to 100 percent power, pulses are each 300ms, and 10 pulses per mm.
G0 : Move to a new location with the laser off.
G1 : Move to a new location with the laser on.
G2 : Move in a Clockwise Arc
G3 : Move in a Counter Clockwise Arc
Name your layer like 10 [feed=600,ppm=40] for 10% power, 600mm per minute cut and 40 pulse per millimetre at 60ms duration
Changelog 2015-03-27
Changelog 2015-03-28
Fixed many many bugs, completed the work on exporting objects and images as rasters.
Fixed up as many situations I could find that threw python error messages and replaced them with meaningful notices for the user.
Changelog 2015-03-30
Accounts for strokes on objects. Conditional raster export as some items in inkscape are positioned strangely.
Changelog 2015-04-1
Need to get the 'positioning for all' functionality working as exporting many raster objects is painfully slow.
Updated script to export rasters with top left as the origin or bottom left.
Changelog 2015-04-10
Fixed a bug with exporting paths when the origin was the top left.
Disabled raster horizintal movement optimisation as it has a bug. Rasters will be a little slower but will come out oriented correctly. Search for line : row2 = rowData
Changelog 2015-04-11
Added back in raster optimising, it's not perfect but it's mostly there. Only a little slow parsing white vertical space now.
Found that raster optimisation code seems to be changing the pixel data at the end of the line somewhere. I'm not sure how since it's meant to just be cutting part of the data line out not changing it. will need to investigate further.
Added option to the menu for users to disable raster optimisations.
Changelog 2015-05-09
Spent a day stuffing around with the exporter and marlin firmware to figure out why pronterface was throwing checksum errors when
sending lots of G02 and G03 arc vector cuts. It turns out that with too much precision in the cuts marlin's buffer fills up and it's
unable to receive any more serial data. I resolved this by reducing the float point precision down to 3 decimal places and shifting
power and pulse settings to the G00 move command that comes before a set of G01, G02 and G03 commands to limit data that's needed to
be sent over the wire.
Changelog 2015-05-255
Updated GCodes to optimise when it sends PPM and laser power info.
Added a Pronterface option which is enabled by default to allow rasters to be printed with pronterface.
Added M80 command for Tim from LMN
I also fixed up the part of the exporter to allow the offset and scaling functions to work. Though I found that looking at the scaling
code it will only scale from the original 0,0 coordinate, it doesn't scale based on a centre point.
"""
###
### Gcode tools
###
import inkex, simplestyle, simplepath
import cubicsuperpath, simpletransform, bezmisc
import os
import math
import bezmisc
import re
import copy
import sys
import time
#Image processing for rastering
import base64
from PIL import Image
from PIL import ImageOps
import subprocess
import simplestyle
import getopt
from io import BytesIO
#_ = inkex._
################################################################################
###
### Constants
###
################################################################################
VERSION = "1.0.1"
STRAIGHT_TOLERANCE = 0.0001
STRAIGHT_DISTANCE_TOLERANCE = 0.0001
LASER_ON = "M3 ;turn the laser on" # LASER ON MCODE
LASER_OFF = "M5 ;turn the laser off\n" # LASER OFF MCODE
HEADER_TEXT = ""
FOOTER_TEXT = ""
BIARC_STYLE = {
'biarc0': simplestyle.formatStyle({ 'stroke': '#88f', 'fill': 'none', 'strokeWidth':'1' }),
'biarc1': simplestyle.formatStyle({ 'stroke': '#8f8', 'fill': 'none', 'strokeWidth':'1' }),
'line': simplestyle.formatStyle({ 'stroke': '#f88', 'fill': 'none', 'strokeWidth':'1' }),
'area': simplestyle.formatStyle({ 'stroke': '#777', 'fill': 'none', 'strokeWidth':'0.1' }),
}
# Inkscape group tag
SVG_GROUP_TAG = inkex.addNS("g", "svg")
SVG_PATH_TAG = inkex.addNS('path','svg')
SVG_IMAGE_TAG = inkex.addNS('image', 'svg')
SVG_TEXT_TAG = inkex.addNS('text', 'svg')
SVG_LABEL_TAG = inkex.addNS("label", "inkscape")
GCODE_EXTENSION = ".g" # changed to be Marlin friendly (ajf)
options = {}
################################################################################
###
### Common functions
###
################################################################################
###
### Just simple output function for better debugging
###
class Logger(object):
first = True
enabled = True
def __init__(self):
home = os.getenv("HOME") or os.getenv("USERPROFILE")
self.logpath = os.path.join(home, "thlaser.log")
def write(self, s):
if (not self.enabled):
return
if self.first and os.path.isfile(self.logpath):
os.remove(self.logpath)
self.first = False
f = open(self.logpath, "a")
f.write(str(s)+"\n")
f.close()
# The global logger object
logger = Logger()
###
### Point (x,y) operations
###
## Pretty much what it sounds like: defines some arithmetic functions that can be applied to points.
class P:
def __init__(self, x, y=None):
if not y==None:
self.x, self.y = float(x), float(y)
else:
self.x, self.y = float(x[0]), float(x[1])
def __add__(self, other): return P(self.x + other.x, self.y + other.y)
def __sub__(self, other): return P(self.x - other.x, self.y - other.y)
def __neg__(self): return P(-self.x, -self.y)
def __mul__(self, other):
if isinstance(other, P):
return self.x * other.x + self.y * other.y
return P(self.x * other, self.y * other)
__rmul__ = __mul__
def __div__(self, other): return P(self.x / other, self.y / other)
def mag(self): return math.hypot(self.x, self.y)
def unit(self):
h = self.mag()
if h: return self / h
else: return P(0,0)
def dot(self, other): return self.x * other.x + self.y * other.y
def rot(self, theta):
c = math.cos(theta)
s = math.sin(theta)
return P(self.x * c - self.y * s, self.x * s + self.y * c)
def angle(self): return math.atan2(self.y, self.x)
def __repr__(self): return '%f,%f' % (self.x, self.y)
def pr(self): return "%.2f,%.2f" % (self.x, self.y)
def to_list(self): return [self.x, self.y]
###
### Functions to operate with CubicSuperPath
###
def csp_at_t(sp1,sp2,t):
bez = (sp1[1][:],sp1[2][:],sp2[0][:],sp2[1][:])
return bezmisc.bezierpointatt(bez,t)
def cspbezsplit(sp1, sp2, t = 0.5):
s1,s2 = bezmisc.beziersplitatt((sp1[1],sp1[2],sp2[0],sp2[1]),t)
return [ [sp1[0][:], sp1[1][:], list(s1[1])], [list(s1[2]), list(s1[3]), list(s2[1])], [list(s2[2]), sp2[1][:], sp2[2][:]] ]
def cspbezsplitatlength(sp1, sp2, l = 0.5, tolerance = 0.01):
bez = (sp1[1][:],sp1[2][:],sp2[0][:],sp2[1][:])
t = bezmisc.beziertatlength(bez, l, tolerance)
return cspbezsplit(sp1, sp2, t)
def cspseglength(sp1,sp2, tolerance = 0.001):
bez = (sp1[1][:],sp1[2][:],sp2[0][:],sp2[1][:])
return bezmisc.bezierlength(bez, tolerance)
def csplength(csp):
total = 0
lengths = []
for sp in csp:
for i in xrange(1,len(sp)):
l = cspseglength(sp[i-1],sp[i])
lengths.append(l)
total += l
return lengths, total
###
### Distance calculattion from point to arc
###
def between(c,x,y):
return x-STRAIGHT_TOLERANCE<=c<=y+STRAIGHT_TOLERANCE or y-STRAIGHT_TOLERANCE<=c<=x+STRAIGHT_TOLERANCE
def distance_from_point_to_arc(p, arc):
P0,P2,c,a = arc
dist = None
p = P(p)
r = (P0-c).mag()
if r>0 :
i = c + (p-c).unit()*r
alpha = ((i-c).angle() - (P0-c).angle())
if a*alpha<0:
if alpha>0: alpha = alpha-2*math.pi
else: alpha = 2*math.pi+alpha
if between(alpha,0,a) or min(abs(alpha),abs(alpha-a))<STRAIGHT_TOLERANCE :
return (p-i).mag(), [i.x, i.y]
else :
d1, d2 = (p-P0).mag(), (p-P2).mag()
if d1<d2 :
return (d1, [P0.x,P0.y])
else :
return (d2, [P2.x,P2.y])
def get_distance_from_csp_to_arc(sp1,sp2, arc1, arc2, tolerance = 0.001 ): # arc = [start,end,center,alpha]
n, i = 10, 0
d, d1, dl = (0,(0,0)), (0,(0,0)), 0
while i<1 or (abs(d1[0]-dl[0])>tolerance and i<2):
i += 1
dl = d1*1
for j in range(n+1):
t = float(j)/n
p = csp_at_t(sp1,sp2,t)
d = min(distance_from_point_to_arc(p,arc1), distance_from_point_to_arc(p,arc2))
d1 = max(d1,d)
n=n*2
return d1[0]
################################################################################
###
### Biarc function
###
### Calculates biarc approximation of cubic super path segment
### splits segment if needed or approximates it with straight line
###
################################################################################
def biarc(sp1, sp2, z1, z2, depth=0,):
def biarc_split(sp1,sp2, z1, z2, depth):
if depth<options.biarc_max_split_depth:
sp1,sp2,sp3 = cspbezsplit(sp1,sp2)
l1, l2 = cspseglength(sp1,sp2), cspseglength(sp2,sp3)
if l1+l2 == 0 : zm = z1
else : zm = z1+(z2-z1)*l1/(l1+l2)
return biarc(sp1,sp2,depth+1,z1,zm)+biarc(sp2,sp3,depth+1,z1,zm)
else: return [ [sp1[1],'line', 0, 0, sp2[1], [z1,z2]] ]
P0, P4 = P(sp1[1]), P(sp2[1])
TS, TE, v = (P(sp1[2])-P0), -(P(sp2[0])-P4), P0 - P4
tsa, tea, va = TS.angle(), TE.angle(), v.angle()
if TE.mag()<STRAIGHT_DISTANCE_TOLERANCE and TS.mag()<STRAIGHT_DISTANCE_TOLERANCE:
# Both tangents are zerro - line straight
return [ [sp1[1],'line', 0, 0, sp2[1], [z1,z2]] ]
if TE.mag() < STRAIGHT_DISTANCE_TOLERANCE:
TE = -(TS+v).unit()
r = TS.mag()/v.mag()*2
elif TS.mag() < STRAIGHT_DISTANCE_TOLERANCE:
TS = -(TE+v).unit()
r = 1/( TE.mag()/v.mag()*2 )
else:
r=TS.mag()/TE.mag()
TS, TE = TS.unit(), TE.unit()
tang_are_parallel = ((tsa-tea)%math.pi<STRAIGHT_TOLERANCE or math.pi-(tsa-tea)%math.pi<STRAIGHT_TOLERANCE )
if ( tang_are_parallel and
((v.mag()<STRAIGHT_DISTANCE_TOLERANCE or TE.mag()<STRAIGHT_DISTANCE_TOLERANCE or TS.mag()<STRAIGHT_DISTANCE_TOLERANCE) or
1-abs(TS*v/(TS.mag()*v.mag()))<STRAIGHT_TOLERANCE) ):
# Both tangents are parallel and start and end are the same - line straight
# or one of tangents still smaller then tollerance
# Both tangents and v are parallel - line straight
return [ [sp1[1],'line', 0, 0, sp2[1], [z1,z2]] ]
c,b,a = v*v, 2*v*(r*TS+TE), 2*r*(TS*TE-1)
if v.mag()==0:
return biarc_split(sp1, sp2, z1, z2, depth)
asmall, bsmall, csmall = abs(a)<10**-10,abs(b)<10**-10,abs(c)<10**-10
if asmall and b!=0: beta = -c/b
elif csmall and a!=0: beta = -b/a
elif not asmall:
discr = b*b-4*a*c
if discr < 0: raise ValueError, (a,b,c,discr)
disq = discr**.5
beta1 = (-b - disq) / 2 / a
beta2 = (-b + disq) / 2 / a
if beta1*beta2 > 0 : raise ValueError, (a,b,c,disq,beta1,beta2)
beta = max(beta1, beta2)
elif asmall and bsmall:
return biarc_split(sp1, sp2, z1, z2, depth)
alpha = beta * r
ab = alpha + beta
P1 = P0 + alpha * TS
P3 = P4 - beta * TE
P2 = (beta / ab) * P1 + (alpha / ab) * P3
def calculate_arc_params(P0,P1,P2):
D = (P0+P2)/2
if (D-P1).mag()==0: return None, None
R = D - ( (D-P0).mag()**2/(D-P1).mag() )*(P1-D).unit()
p0a, p1a, p2a = (P0-R).angle()%(2*math.pi), (P1-R).angle()%(2*math.pi), (P2-R).angle()%(2*math.pi)
alpha = (p2a - p0a) % (2*math.pi)
if (p0a<p2a and (p1a<p0a or p2a<p1a)) or (p2a<p1a<p0a) :
alpha = -2*math.pi+alpha
if abs(R.x)>1000000 or abs(R.y)>1000000 or (R-P0).mag<options.min_arc_radius :
return None, None
else :
return R, alpha
R1,a1 = calculate_arc_params(P0,P1,P2)
R2,a2 = calculate_arc_params(P2,P3,P4)
if R1==None or R2==None or (R1-P0).mag()<STRAIGHT_TOLERANCE or (R2-P2).mag()<STRAIGHT_TOLERANCE : return [ [sp1[1],'line', 0, 0, sp2[1], [z1,z2]] ]
d = get_distance_from_csp_to_arc(sp1,sp2, [P0,P2,R1,a1],[P2,P4,R2,a2])
if d > options.biarc_tolerance and depth<options.biarc_max_split_depth : return biarc_split(sp1, sp2, z1, z2, depth)
else:
if R2.mag()*a2 == 0 : zm = z2
else : zm = z1 + (z2-z1)*(R1.mag()*a1)/(R2.mag()*a2+R1.mag()*a1)
return [ [ sp1[1], 'arc', [R1.x,R1.y], a1, [P2.x,P2.y], [z1,zm] ], [ [P2.x,P2.y], 'arc', [R2.x,R2.y], a2, [P4.x,P4.y], [zm,z2] ] ]
################################################################################
###
### Inkscape helper functions
###
################################################################################
# Returns true if the given node is a layer
def is_layer(node):
return (node.tag == SVG_GROUP_TAG and
node.get(inkex.addNS("groupmode", "inkscape")) == "layer")
def get_layers(document):
layers = []
root = document.getroot()
for node in root.iterchildren():
if (is_layer(node)):
# Found an inkscape layer
layers.append(node)
return layers
def parse_layer_name(txt):
params = {}
try:
n = txt.index("[")
except ValueError:
layerName = txt.strip()
else:
layerName = txt[0:n].strip()
args = txt[n+1:].strip()
if (args.endswith("]")):
args = args[0:-1]
for arg in args.split(","):
try:
(field, value) = arg.split("=")
except:
raise ValueError("Invalid argument in layer '%s'" % layerName)
if (field == "feed" or field == "ppm"):
try:
value = float(value)
except:
raise ValueError("Invalid layer name '%s'" % value)
params[field] = value
logger.write("%s == %s" % (field, value))
return (layerName, params)
################################################################################
###
### Gcode tools class
###
################################################################################
class Gcode_tools(inkex.Effect):
def __init__(self):
inkex.Effect.__init__(self)
outdir = os.getenv("HOME") or os.getenv("USERPROFILE")
if (outdir):
outdir = os.path.join(outdir, "Desktop")
else:
outdir = os.getcwd()
self.OptionParser.add_option("-d", "--directory", action="store", type="string", dest="directory", default=outdir, help="Directory for gcode file")
self.OptionParser.add_option("-f", "--filename", action="store", type="string", dest="file", default="-1.0", help="File name")
self.OptionParser.add_option("-u", "--Xscale", action="store", type="float", dest="Xscale", default="1.0", help="Scale factor X")
self.OptionParser.add_option("-v", "--Yscale", action="store", type="float", dest="Yscale", default="1.0", help="Scale factor Y")
self.OptionParser.add_option("-x", "--Xoffset", action="store", type="float", dest="Xoffset", default="0.0", help="Offset along X")
self.OptionParser.add_option("-y", "--Yoffset", action="store", type="float", dest="Yoffset", default="0.0", help="Offset along Y")
# added move (laser off) feedrate and laser intensity; made all int rather than float - (ajf)
self.OptionParser.add_option("-m", "--Mfeed", action="store", type="int", dest="Mfeed", default="2000", help="Default Move Feed rate in unit/min")
self.OptionParser.add_option("-p", "--feed", action="store", type="int", dest="feed", default="300", help="Default Cut Feed rate in unit/min")
self.OptionParser.add_option("-l", "--laser", action="store", type="int", dest="laser", default="10", help="Default Laser intensity (0-100 %)")
self.OptionParser.add_option("-b", "--homebefore", action="store", type="inkbool", dest="homebefore", default=True, help="Home all beofre starting (G28 XY)")
self.OptionParser.add_option("-a", "--homeafter", action="store", type="inkbool", dest="homeafter", default=False, help="Home X Y at end of job")
self.OptionParser.add_option("", "--biarc-tolerance", action="store", type="float", dest="biarc_tolerance", default="1", help="Tolerance used when calculating biarc interpolation.")
self.OptionParser.add_option("", "--biarc-max-split-depth", action="store", type="int", dest="biarc_max_split_depth", default="4", help="Defines maximum depth of splitting while approximating using biarcs.")
self.OptionParser.add_option("", "--unit", action="store", type="string", dest="unit", default="G21 (All units in mm)\n", help="Units")
self.OptionParser.add_option("", "--function", action="store", type="string", dest="function", default="Curve", help="What to do: Curve|Area|Area inkscape")
self.OptionParser.add_option("", "--tab", action="store", type="string", dest="tab", default="", help="Means nothing right now. Notebooks Tab.")
#self.OptionParser.add_option("", "--generate_not_parametric_code",action="store", type="inkbool", dest="generate_not_parametric_code", default=False,help="Generated code will be not parametric.")
self.OptionParser.add_option("", "--double_sided_cutting",action="store", type="inkbool", dest="double_sided_cutting", default=False,help="Generate code for double-sided cutting.")
self.OptionParser.add_option("", "--draw-curves", action="store", type="inkbool", dest="drawCurves", default=False,help="Draws curves to show what geometry was processed")
self.OptionParser.add_option("", "--logging", action="store", type="inkbool", dest="logging", default=False, help="Enable output logging from the plugin")
self.OptionParser.add_option("", "--loft-distances", action="store", type="string", dest="loft_distances", default="10", help="Distances between paths.")
self.OptionParser.add_option("", "--loft-direction", action="store", type="string", dest="loft_direction", default="crosswise", help="Direction of loft's interpolation.")
self.OptionParser.add_option("", "--loft-interpolation-degree",action="store", type="float", dest="loft_interpolation_degree", default="2", help="Which interpolation use to loft the paths smooth interpolation or staright.")
self.OptionParser.add_option("", "--min-arc-radius", action="store", type="float", dest="min_arc_radius", default="0.0005", help="All arc having radius less than minimum will be considered as straight line")
self.OptionParser.add_option("", "--mainboard", action="store", type="string", dest="mainboard", default="ramps", help="Mainboard")
self.OptionParser.add_option("", "--pronterface", action="store", type="inkbool", dest="pronterface", default=True, help="Are you using Pronterface? If so we need to change some characters in the GCode raster data to keep pronterface happy. Slight loss of intensity on pure blacks but nothing major.")
self.OptionParser.add_option("", "--origin", action="store", type="string", dest="origin", default="topleft", help="Origin of the Y Axis")
self.OptionParser.add_option("", "--optimiseraster", action="store", type="inkbool", dest="optimiseraster", default=True, help="Optimise raster horizontal scanning speed")
def parse_curve(self, path):
# if self.options.Xscale!=self.options.Yscale:
# xs,ys = self.options.Xscale,self.options.Yscale
# self.options.Xscale,self.options.Yscale = 1.0, 1.0
# else :
xs,ys = 1.0,1.0
# ### Sort to reduce Rapid distance
# np = [p[0]]
# del p[0]
# while len(p)>0:
# end = np[-1][-1][1]
# dist = None
# for i in range(len(p)):
# start = p[i][0][1]
#
# dist = max( ( -( ( end[0]-start[0])**2+(end[1]-start[1])**2 ) ,i) , dist )
# np += [p[dist[1]][:]]
# del p[dist[1]]
# p = np[:]
if(path['type'] == "vector") :
lst = {}
lst['type'] = "vector"
lst['data'] = []
for subpath in path['data']:
lst['data'].append(
[[subpath[0][1][0]*xs, subpath[0][1][1]*ys], 'move', 0, 0]
)
for i in range(1,len(subpath)):
sp1 = [ [subpath[i-1][j][0]*xs, subpath[i-1][j][1]*ys] for j in range(3)]
sp2 = [ [subpath[i ][j][0]*xs, subpath[i ][j][1]*ys] for j in range(3)]
lst['data'] += biarc(sp1,sp2,0,0)
lst['data'].append(
[[subpath[-1][1][0]*xs, subpath[-1][1][1]*ys], 'end', 0, 0]
)
return lst
#Raster image data, cut/burn left to right, drop down a line, repeat in reverse until completed.
else:
#No need to modify
return path
def draw_curve(self, curve, group=None, style=BIARC_STYLE):
if group==None:
group = inkex.etree.SubElement( self.biarcGroup, SVG_GROUP_TAG )
s, arcn = '', 0
for si in curve:
if s!='':
if s[1] == 'line':
inkex.etree.SubElement( group, SVG_PATH_TAG,
{
'style': style['line'],
'd':'M %s,%s L %s,%s' % (s[0][0], s[0][1], si[0][0], si[0][1]),
'comment': str(s)
}
)
elif s[1] == 'arc':
arcn += 1
sp = s[0]
c = s[2]
a = ( (P(si[0])-P(c)).angle() - (P(s[0])-P(c)).angle() )%(2*math.pi) #s[3]
if s[3]*a<0:
if a>0: a = a-2*math.pi
else: a = 2*math.pi+a
r = math.sqrt( (sp[0]-c[0])**2 + (sp[1]-c[1])**2 )
a_st = ( math.atan2(sp[0]-c[0],- (sp[1]-c[1])) - math.pi/2 ) % (math.pi*2)
if a>0:
a_end = a_st+a
else:
a_end = a_st*1
a_st = a_st+a
inkex.etree.SubElement( group, inkex.addNS('path','svg'),
{
'style': style['biarc%s' % (arcn%2)],
inkex.addNS('cx','sodipodi'): str(c[0]),
inkex.addNS('cy','sodipodi'): str(c[1]),
inkex.addNS('rx','sodipodi'): str(r),
inkex.addNS('ry','sodipodi'): str(r),
inkex.addNS('start','sodipodi'): str(a_st),
inkex.addNS('end','sodipodi'): str(a_end),
inkex.addNS('open','sodipodi'): 'true',
inkex.addNS('type','sodipodi'): 'arc',
'comment': str(s)
})
s = si
def check_dir(self):
if (os.path.isdir(self.options.directory)):
if (os.path.isfile(self.options.directory+'/header')):
f = open(self.options.directory+'/header', 'r')
self.header = f.read()
f.close()
else:
self.header = HEADER_TEXT
if (os.path.isfile(self.options.directory+'/footer')):
f = open(self.options.directory+'/footer','r')
self.footer = f.read()
f.close()
else:
self.footer = FOOTER_TEXT
else:
inkex.errormsg(("Directory specified for output gcode does not exist! Please create it."))
return False
return True
# Turns a list of arguments into gcode-style parameters (eg (1, 2, 3) -> "X1 Y2 Z3"),
# taking scaling, offsets and the "parametric curve" setting into account
def make_args(self, c):
c = [c[i] if i<len(c) else None for i in range(6)]
if c[5] == 0:
c[5] = None
# next few lines generate the stuff at the front of the file - scaling, offsets, etc (adina)
#if self.options.generate_not_parametric_code:
s = ["X", "Y", "Z", "I", "J", "K"]
s1 = ["","","","","",""]
m = [self.options.Xscale, -self.options.Yscale, 1,
self.options.Xscale, -self.options.Yscale, 1]
a = [self.options.Xoffset, self.options.Yoffset, 0, 0, 0, 0]
# else:
# s = ["X", "Y", "Z", "I", "J", "K"]
# s1 = ["", "", "", "", "", ""]
# m = [1, -1, 1, 1, -1, 1]
# a = [0, 0, 0, 0, 0, 0]
#There's no aphrodisiac like loneliness
#Add the page height if the origin is the bottom left.
if (self.options.origin != 'topleft'):
a[1] += self.pageHeight
args = []
for i in range(6):
if c[i]!=None:
value = self.unitScale*(c[i]*m[i]+a[i])
args.append(s[i] + ("%.3f" % value) + s1[i])
return " ".join(args)
def generate_raster_gcode(self, curve, laserPower, altfeed=None):
gcode = ''
#Setup our feed rate, either from the layer name or from the default value.
if (altfeed):
# Use the "alternative" feed rate specified
cutFeed = "F%i" % altfeed
else:
#if self.options.generate_not_parametric_code:
# cutFeed = "F%i" % self.options.feed
#else:
cutFeed = "F%i" % self.options.feed
#This extension assumes that your copy of Inkscape is running at 90dpi (it is by default)
#R = mm per pixel
#R = 1 / dots per mm
#90dpi = 1 / (90 / 25.4)
#Rasters are exported internally at 270dpi.
#So R = 1 / (270 / 25.4)
# = 0.09406
gcode += '\n\n;Beginning of Raster Image '+str(curve['id'])+' pixel size: '+str(curve['width'])+'x'+str(curve['height'])+'\n'
gcode += 'M649 S'+str(laserPower)+' B2 D0 R0.09406\n'
#Do not remove these two lines, they're important. Will not raster correctly if feedrate is not set prior.
#Move fast to point, cut at correct speed.
if(cutFeed < self.options.Mfeed):
gcode += 'G0 X'+str(curve['x'])+' Y'+str(curve['y'])+' F'+str(self.options.Mfeed)+'\n'
gcode += 'G0 X'+str(curve['x'])+' Y'+str(curve['y'])+' '+cutFeed+'\n'
#def get_chunks(arr, chunk_size = 51):
def get_chunks(arr, chunk_size = 51):
chunks = [ arr[start:start+chunk_size] for start in range(0, len(arr), chunk_size)]
return chunks
#return the first pixel that holds data.
def first_in_list(arr):
end = 0
for i in range(len(arr)):
if (arr[i] == 0):
end = i
if (arr[i] > 0):
break
return end
#does this line have any data?
def is_blank_line(arr):
for i in range(len(arr)):
if (arr[i] > 0):
return False
return True
#return the last pixel that holds data.
def last_in_list(arr):
end = len(arr)
for i in range(len(arr)):
if (arr[i] > 0):
end = i
return end
#Flip the image top to bottom.
row = curve['data'][::-1]
previousRight = 99999999999
previousLeft = 0
firstRow = True
first = True
forward = True
for index, rowData in enumerate(row):
splitRight = 0
splitLeft = 0
#Turnkey - 11-04-15
#The below allows iteration over blank lines, while still being 'mostly' optimised for path. could still do with a little improvement for optimising horizontal movement and extrenuous for loops.
sub_index = index+1
if(sub_index < len(row)):
while is_blank_line(row[sub_index-1]):
if(sub_index < len(row)):
sub_index += 1
else:
break
#are we processing data before the last line?
if(sub_index < len(row)):
# Determine where to split the lines.
##################################################
#If the left most pixel of the next row is earlier than the current row, then extend.
if(first_in_list(row[sub_index]) > first_in_list(rowData)):
splitLeft = first_in_list(rowData)
else:
splitLeft = first_in_list(row[sub_index])
#If the end pixel of the next line is later than the current line, extend.
if(last_in_list(row[sub_index]) > last_in_list(rowData)):
splitRight = last_in_list(row[sub_index])
else:
splitRight = last_in_list(rowData)
else:
splitLeft = first_in_list(rowData)
splitRight = last_in_list(rowData)
#Positive direction
if forward:
#Split the right side.
###########################################
#Don't split more than the start of the last row as we print in reverse for alternate lines
splitLeft = previousLeft
previousRight = splitRight
#Negative direction
else:
#Split the left side.
###########################################
#Don't split more than the end of the last row as we print in reverse for alternate lines
splitRight = previousRight
previousLeft = splitLeft
#Exception to the rule : Don't split the left of the first row.
if(firstRow):
splitLeft = (previousLeft)
firstRow = False
row2 = rowData[(splitLeft+1):(splitRight+1)]
#Turnkey 11-04-15 - For the time being, I've disabled the raster optimisation with the below line.
#There's a bug where it cannot correctly handle white space between vertical lines in raster images and it fucks up the horizontal alignment.
#-Update, users can disable optimisations through the options now.
#The optimisation has a bug which can produce hot spots at the edge of rasters.
if( not self.options.optimiseraster ):
row2 = rowData
#Heading Left to right, invert the data.
if not forward:
result_row = row2[::-1]
#Heading Right to left.
else:
result_row = row2
first = True
for chunk in get_chunks(result_row,51):
if first:
if forward:
gcode += ("\nG7 $1 ")
else:
gcode += ("\nG7 $0 ")
first = not first
else:
gcode += ("G7 ")
b64 = base64.b64encode("".join(chr(y) for y in chunk))
#If we're using pronterface, we need to change raster data / and + in the base64 alphabet to letter 9. This loses a little intensity in pure blacks but keeps pronterface happy.
if( self.options.pronterface ):
b64 = b64.replace("+", "9").replace("/", "9");
gcode += ("L"+str(len(b64))+" ")
gcode += ("D"+b64+ "\n")
forward = not forward
gcode += ("M5 \n");
gcode += ';End of Raster Image '+str(curve['id'])+'\n\n'
return gcode
def generate_gcode(self, curve, depth, laserPower, altfeed=None, altppm=None):
gcode = ''
#Setup our feed rate, either from the layer name or from the default value.
if (altfeed):
# Use the "alternative" feed rate specified
cutFeed = "F%i" % altfeed
else:
cutFeed = "F%i" % self.options.feed
#Setup our pulse per millimetre option, if applicable
#B: laser firing mode (0 = continuous, 1 = pulsed, 2 = raster)
if (altppm):
# Use the "alternative" ppm - L60000 is 60us
ppmValue = "L60000 P%.2f B1 D0" % altppm
else:
#Set the laser firing mode to continuous.
ppmValue = "B0 D0"
cwArc = "G02"
ccwArc = "G03"
# The geometry is reflected, so invert the orientation of the arcs to match
if (self.flipArcs):
(cwArc, ccwArc) = (ccwArc, cwArc)
# The 'laser on' and 'laser off' m-codes get appended to the GCODE generation
lg = 'G00'
firstGCode = False
for i in range(1,len(curve['data'])):
s, si = curve['data'][i-1], curve['data'][i]
#G00 : Move with the laser off to a new point
if s[1] == 'move':
#Turn off the laser if it was on previously.
#if lg != "G00":
# gcode += LASER_OFF + "\n"
gcode += "G00 " + self.make_args(si[0]) + " F%i " % self.options.Mfeed + "\n"
lg = 'G00'
elif s[1] == 'end':
lg = 'G00'
#G01 : Move with the laser turned on to a new point
elif s[1] == 'line':
if not firstGCode: #Include the ppm values for the first G01 command in the set.
gcode += "G01 " + self.make_args(si[0]) + " S%.2f " % laserPower + "%s " % cutFeed + "%s" % ppmValue + "\n"
firstGCode = True
else:
gcode += "G01 " + self.make_args(si[0]) + "\n"
lg = 'G01'
#G02 and G03 : Move in an arc with the laser turned on.
elif s[1] == 'arc':
dx = s[2][0]-s[0][0]
dy = s[2][1]-s[0][1]
if abs((dx**2 + dy**2)*self.options.Xscale) > self.options.min_arc_radius:
r1 = P(s[0])-P(s[2])
r2 = P(si[0])-P(s[2])
if abs(r1.mag() - r2.mag()) < 0.001:
if (s[3] > 0):
gcode += cwArc
else:
gcode += ccwArc
if not firstGCode: #Include the ppm values for the first G01 command in the set.
gcode += " " + self.make_args(si[0] + [None, dx, dy, None]) + "S%.2f " % laserPower + "%s " % cutFeed + "%s" % ppmValue + "\n"
firstGCode = True
else:
gcode += " " + self.make_args(si[0] + [None, dx, dy, None]) + "\n"
else:
r = (r1.mag()+r2.mag())/2
if (s[3] > 0):
gcode += cwArc
else:
gcode += ccwArc
if not firstGCode: #Include the ppm values for the first G01 command in the set.
gcode += " " + self.make_args(si[0]) + " R%f" % (r*self.options.Xscale) + "S%.2f " % laserPower + "%s " % cutFeed + "%s" % ppmValue + "\n"
firstGCode = True
else:
gcode += " " + self.make_args(si[0]) + " R%f" % (r*self.options.Xscale) + "\n"
lg = cwArc
#The arc is less than the minimum arc radius, draw it as a straight line.
else:
if not firstGCode: #Include the ppm values for the first G01 command in the set.
gcode += "G01 " + self.make_args(si[0]) + "S%.2f " % laserPower + "%s " % cutFeed + "%s" % ppmValue + "\n"
firstGCode = True
else:
gcode += "G01 " + self.make_args(si[0]) + "\n"
lg = 'G01'
#The end of the layer.
if si[1] == 'end':
gcode += LASER_OFF
return gcode
def tool_change(self):
# Include a tool change operation
gcode = TOOL_CHANGE % (self.currentTool+1)
# Select the next available tool
self.currentTool = (self.currentTool+1) % 32
return gcode
#Determine the tmp directory for the user's operating system.
def getTmpPath(self):
"""Define the temporary folder path depending on the operating system"""
if os.name == 'nt':
return 'C:\\WINDOWS\\Temp\\'
else:
return '/tmp/'
################################################################################
###
### Curve to Gcode
###
################################################################################
def effect_curve(self, selected):
selected = list(selected)
# Set group
if self.options.drawCurves and len(selected)>0:
self.biarcGroup = inkex.etree.SubElement( selected[0].getparent(), SVG_GROUP_TAG )
options.Group = self.biarcGroup
# Recursively compiles a list of paths that are decendant from the given node
self.skipped = 0
def compile_paths(parent, node, trans):
# Apply the object transform, along with the parent transformation
mat = node.get('transform', None)
path = {}
if mat:
mat = simpletransform.parseTransform(mat)
trans = simpletransform.composeTransform(trans, mat)
if node.tag == SVG_PATH_TAG:
# This is a path object
if (not node.get("d")): return []
csp = cubicsuperpath.parsePath(node.get("d"))
path['type'] = "vector"
path['id'] = node.get("id")
path['data'] = []
if (trans):
simpletransform.applyTransformToPath(trans, csp)
path['data'] = csp
#Apply a transform in the Y plan to flip the path vertically
#If we want our origin to the the top left.
if (self.options.origin == 'topleft'):
csp = path['data']
simpletransform.applyTransformToPath(([1.0, 0.0, 0], [0.0, -1.0, 0]), csp)
path['data'] = csp
return path
elif node.tag == SVG_GROUP_TAG:
# This node is a group of other nodes
pathsGroup = []
for child in node.iterchildren():
data = compile_paths(parent, child, trans)
#inkex.errormsg(str(data))
if type(data) is not list:
pathsGroup.append(data.copy())
else:
pathsGroup += data
return pathsGroup
else :
#Raster the results.
if(node.get("x") > 0):
tmp = self.getTmpPath() #OS tmp directory