forked from JohanSchott/impurityModel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimpmod_interface.py
executable file
·681 lines (630 loc) · 23.5 KB
/
impmod_interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
from os import devnull, remove
import traceback
import sys
import pickle
import numpy as np
import scipy as sp
from impmod_ed import ffi
from mpi4py import MPI
from rspt2spectra import offdiagonal, orbitals, h2imp
import rspt2spectra.hyb_fit as hf
# hf.get_block_structure, hf.get_identical_blocks, hf.get_transposed_blocks, hf.fit_hyb
from rspt2spectra import h2imp, energies
from impurityModel.ed.greens_function import save_Greens_function
from impurityModel.ed import finite
from impurityModel.ed.lanczos import Reort
from impurityModel.ed.greens_function import rotate_Greens_function, rotate_matrix, rotate_4index_U
from impurityModel.ed.manybody_basis import CIPSI_Basis
def matrix_print(matrix):
print("\n".join([" ".join([f"{np.real(el): .6f} {np.imag(el):+.6f}j" for el in row]) for row in matrix]))
class ImpModCluster:
def __init__(
self,
label,
h_dft,
hyb,
u4,
slater,
nominal_occ,
delta_occ,
n_bath_states,
sig,
sig_real,
sig_static,
sig_dc,
corr_to_cf,
corr_to_spherical,
blocked,
spin_flip_dj,
):
self.label = label
self.h_dft = h_dft
self.u4 = u4
self.hyb = hyb
self.slater = slater
self.bath_states = n_bath_states
self.nominal_occ = nominal_occ
self.delta_occ = delta_occ
self.sig = sig
self.sig_real = sig_real
self.sig_static = sig_static
self.sig_dc = sig_dc
self.corr_to_cf = corr_to_cf
self.corr_to_spherical = corr_to_spherical
self.spin_flip_dj = spin_flip_dj
if blocked:
self.blocks = hf.get_block_structure(
self.hyb,
h_dft,
)
self.identical_blocks = hf.get_identical_blocks(
self.blocks,
self.hyb,
h_dft,
)
self.transposed_blocks = hf.get_transposed_blocks(
self.blocks,
self.hyb,
h_dft,
)
else:
# Use only one nxn block
self.blocks = [[i for i in range(hyb.shape[1])]]
self.identical_blocks = [[0]]
self.transposed_blocks = [[]]
self.inequivalent_blocks = []
for blocks in self.identical_blocks:
unique = True
for transpose in self.transposed_blocks:
if blocks[0] in transpose[1:]:
unique = False
break
if unique:
self.inequivalent_blocks.append(blocks[0])
class dcStruct:
def __init__(
self,
nominal_occ,
delta_occ,
num_spin_orbitals,
bath_states,
u4,
slater_params,
peak_position,
dc_guess,
spin_flip_dj,
):
self.nominal_occ = nominal_occ
self.delta_occ = delta_occ
self.num_spin_orbitals = num_spin_orbitals
self.bath_states = bath_states
self.u4 = u4
self.slater_params = slater_params
self.peak_position = peak_position
self.dc_guess = dc_guess
self.spin_flip_dj = spin_flip_dj
def __repr__(self):
return (
f"dcStruct( nominal_occ = {self.nominal_occ},\n"
f" delta_occ = {self.delta_occ},\n"
f" num_spin_orbitals = {self.num_spin_orbitals},\n"
f" bath_states = {self.bath_states},\n"
f" slater_params = {self.slater_params},\n"
f" peak_position = {self.peak_position})"
f" dc_guess = {self.dc_guess})"
)
def parse_solver_line(solver_line):
"""
N0 dN dVal dCon Nbath [[pro, full] [dense_cutoff 50] [no_block], [fit_unocc] [weight 2]]
"""
# Remove comments from the solver line
solver_line = solver_line.split("!")[0]
solver_line = solver_line.split("#")[0]
solver_array = solver_line.strip().split()
assert (
len(solver_array) >= 5
), "The impurityModel ED solver requires at least 5 arguments; N0 dN dValence dConduction nBaths"
try:
nominal_occ = (int(solver_array[0]), 0, 0)
delta_occ = (int(solver_array[1]), int(solver_array[2]), int(solver_array[3]))
nBaths = int(solver_array[4])
except Exception as e:
raise RuntimeError(
f"{e}\n"
f"--->N0 {solver_array[0]}\n"
f"--->dN {solver_array[1]}\n"
f"--->dValence {solver_array[2]}\n"
f"--->dConduction {solver_array[3]}\n"
f"--->Nbaths {solver_array[4]}\n"
f"--->Other params {solver_array[5:]}"
)
dense_cutoff = 50
reort = Reort.NONE
blocked = True
fit_unocc = False
weight = 2
spin_flip_dj = False
if len(solver_array) > 5:
skip_next = False
for i in range(5, len(solver_array)):
if skip_next:
skip_next = False
continue
arg = solver_array[i]
if arg.lower() == "pro":
reort = Reort.PARTIAL
elif arg.lower() == "full":
reort = Reort.FULL
elif arg.lower() == "dense_cutoff":
dense_cutoff = int(solver_array[i + 1])
skip_next = True
elif arg.lower() == "no_block":
blocked = False
elif arg.lower() == "fit_unocc":
fit_unocc = True
elif arg.lower() == "weight":
weight = float(solver_array[i + 1])
skip_next = True
elif arg.lower() == "spin_flip_dj":
spin_flip_dj = True
else:
raise RuntimeError(f"Unknown solver parameter {arg}.\n" f"--->Other solver params {solver_array[5:]}")
print(
f"Nominal imp. occupation |> {nominal_occ[0]}\n"
f"Delta occupation |> {delta_occ}\n"
f"# bath states / imp. orb.|> {nBaths}\n"
f"Reorthogonalizaion mode |> {reort}\n"
f"Dense matrix size cutoff |> {dense_cutoff}\n"
f"Use block structure |> {blocked}\n"
f"Fit unoccupied states |> {fit_unocc}\n"
f"Fitting weight factor |> {weight}\n"
f"Generate spin fliped Djs |> {spin_flip_dj}\n"
)
return nominal_occ, delta_occ, nBaths, reort, dense_cutoff, blocked, fit_unocc, weight, spin_flip_dj
@ffi.def_extern()
def run_impmod_ed(
rspt_label,
rspt_solver_line,
rspt_dc_line,
rspt_dc_flag,
rspt_slater,
rspt_u4,
rspt_hyb,
rspt_h_dft,
rspt_sig,
rspt_sig_real,
rspt_sig_static,
rspt_sig_dc,
rspt_iw,
rspt_w,
rspt_corr_to_cf,
rspt_rot_spherical,
n_orb,
n_iw,
n_w,
n_rot_cols,
eim,
tau,
verbosity,
size_real,
size_complex,
):
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.rank
label = ffi.string(rspt_label, 18).decode("ascii")
solver_line = ffi.string(rspt_solver_line, 100).decode("ascii")
h_dft = np.ndarray(
buffer=ffi.buffer(rspt_h_dft, n_orb * n_orb * size_complex), shape=(n_orb, n_orb), order="F", dtype=complex
)
u4 = np.ndarray(
buffer=ffi.buffer(rspt_u4, n_orb * n_orb * n_orb * n_orb * size_complex),
shape=(n_orb, n_orb, n_orb, n_orb),
order="F",
dtype=complex,
)
hyb = np.ndarray(
buffer=ffi.buffer(rspt_hyb, n_w * n_orb * n_orb * size_complex),
shape=(n_orb, n_orb, n_w),
order="F",
dtype=complex,
)
iw = np.ndarray(buffer=ffi.buffer(rspt_iw, n_iw * size_real), shape=(n_iw,), dtype=float)
w = np.ndarray(buffer=ffi.buffer(rspt_w, n_w * size_real), shape=(n_w,), dtype=float)
sig = np.ndarray(
buffer=ffi.buffer(rspt_sig, n_iw * n_orb * n_orb * size_complex),
shape=(n_orb, n_orb, n_iw),
order="F",
dtype=complex,
)
sig_real = np.ndarray(
buffer=ffi.buffer(rspt_sig_real, n_w * n_orb * n_orb * size_complex),
shape=(n_orb, n_orb, n_w),
order="F",
dtype=complex,
)
sig_static = np.ndarray(
buffer=ffi.buffer(rspt_sig_static, n_orb * n_orb * size_complex), shape=(n_orb, n_orb), order="F", dtype=complex
)
sig_dc = np.ndarray(
buffer=ffi.buffer(rspt_sig_dc, n_orb * n_orb * size_complex), shape=(n_orb, n_orb), order="F", dtype=complex
)
rspt_rot_spherical_arr = np.ndarray(
buffer=ffi.buffer(rspt_rot_spherical, n_orb * n_rot_cols * size_complex),
shape=(n_orb, n_rot_cols),
order="F",
dtype=complex,
)
rspt_corr_to_cf_arr = np.ndarray(
buffer=ffi.buffer(rspt_corr_to_cf, n_orb * n_orb * size_complex),
shape=(n_orb, n_rot_cols),
order="F",
dtype=complex,
)
slater_from_rspt = np.ndarray(buffer=ffi.buffer(rspt_slater, 4 * size_real), shape=(4,), dtype=float)
if n_rot_cols == n_orb:
corr_to_cf = rspt_corr_to_cf_arr
corr_to_spherical = rspt_rot_spherical_arr
else:
corr_to_cf = np.empty((n_orb, n_orb), dtype=complex)
corr_to_cf[:, :n_rot_cols] = rspt_corr_to_cf_arr
corr_to_cf[:, n_rot_cols:] = np.roll(rspt_corr_to_cf_arr, n_rot_cols, axis=0)
corr_to_spherical = np.empty((n_orb, n_orb), dtype=complex)
corr_to_spherical[:, :n_rot_cols] = rspt_rot_spherical_arr
corr_to_spherical[:, n_rot_cols:] = np.roll(rspt_rot_spherical_arr, n_rot_cols, axis=0)
# Rotate the U-matrix to the CF basis
u4 = rotate_4index_U(u4, corr_to_cf)
# impurityModel uses a weird convention for the U-matrix
u4 = np.moveaxis(u4, 1, 0)
# Rotate hybridization function and DFT hamiltonian to the CF basis
hyb = rotate_Greens_function(hyb, corr_to_cf)
h_dft = rotate_matrix(h_dft, corr_to_cf)
l = (n_orb // 2 - 1) // 2
slater = [0] * (2 * l + 1)
for i in range(l + 1):
slater[2 * i] = slater_from_rspt[i]
stdout_save = sys.stdout
if rank == 0:
sys.stdout = open(f"impurityModel-{label.strip()}{'-dc' if rspt_dc_flag == 1 else ''}.out", "w")
elif True or verbosity > 0:
sys.stdout = open(f"impurityModel-{label.strip()}{'-dc' if rspt_dc_flag == 1 else ''}-{rank}.out", "w")
else:
sys.stdout = open(devnull, "w")
(
nominal_occ,
delta_occ,
bath_states_per_orbital,
reort,
dense_cutoff,
blocked,
fit_unocc,
weight,
spin_flip_dj,
) = parse_solver_line(solver_line)
nominal_occ = ({l: nominal_occ[0]}, {l: nominal_occ[1]}, {l: nominal_occ[2]})
delta_occ = ({l: delta_occ[0]}, {l: delta_occ[1]}, {l: delta_occ[2]})
h_op, e_baths = get_ed_h0(
h_dft,
hyb,
corr_to_cf,
bath_states_per_orbital,
w,
eim,
gamma=0.001,
exp_weight=weight,
imag_only=False,
valence_bath_only=not fit_unocc,
label=label.strip(),
save_baths_and_hopping=rspt_dc_flag == 1,
verbose=(verbosity >= 2 or rspt_dc_flag == 1) and rank == 0,
comm=comm,
)
if rank == 0:
with open(f"Ham-op-{label.strip()}.pickle", "wb") as f:
pickle.dump(h_op, f)
h_op = comm.bcast(h_op, root=0)
e_baths = comm.bcast(e_baths, root=0)
n_bath_states = ({l: len(e_baths[e_baths <= 0])}, {l: len(e_baths[e_baths > 0])})
nominal_occ = (nominal_occ[0], {l: len(e_baths[e_baths <= 0])}, nominal_occ[2])
if rspt_dc_flag == 1:
dc_line = ffi.string(rspt_dc_line, 100).decode("ascii")
dc_line = dc_line.split("!")[0]
dc_line = dc_line.split("#")[0]
dc_array = dc_line.strip().split()
assert len(dc_array) == 1
peak_position = float(dc_array[0])
dc_struct = dcStruct(
nominal_occ=nominal_occ,
delta_occ=delta_occ,
num_spin_orbitals=n_orb + len(e_baths),
bath_states=({l: sum(e_baths < 0)}, {l: sum(e_baths >= 0)}),
u4=u4,
slater_params=slater,
peak_position=peak_position,
dc_guess=sig_dc[0, 0],
spin_flip_dj=spin_flip_dj,
)
try:
sig_dc[:, :] = fixed_peak_dc(h_op, dc_struct, rank=rank, verbose=rank == 0, dense_cutoff=dense_cutoff)
er = 0
except Exception as e:
print("!" * 100)
print(f"Exception {repr(e)} caught on rank {rank}!")
print(traceback.format_exc())
print("Adding positive infinity to the imaginary part of the DC selfenergy.", flush=True)
print("!" * 100)
sig_dc[:, :] = np.inf + 1j * np.inf
er = -1
comm.Abort(er)
sys.stdout.close()
sys.stdout = stdout_save
return er
cluster = ImpModCluster(
label=label.strip(),
h_dft=h_dft,
hyb=hyb,
u4=u4,
slater=slater,
n_bath_states=n_bath_states,
nominal_occ=nominal_occ,
delta_occ=delta_occ,
sig=sig,
sig_real=sig_real,
sig_static=sig_static,
sig_dc=sig_dc,
corr_to_cf=corr_to_cf,
corr_to_spherical=corr_to_spherical,
blocked=blocked,
spin_flip_dj=spin_flip_dj,
)
from impurityModel.ed import selfenergy
try:
selfenergy.run(
cluster, h_op, 1j * iw, w, eim, tau, verbosity if rank == 0 else 0, reort=reort, dense_cutoff=dense_cutoff
)
# Rotate self energy from CF basis to RSPt's corr basis
u = np.conj(corr_to_cf.T)
cluster.sig[:, :, :] = rotate_Greens_function(cluster.sig, u)
cluster.sig_real[:, :, :] = rotate_Greens_function(cluster.sig_real, u)
cluster.sig_static[:, :] = rotate_matrix(cluster.sig_static, u)
er = 0
except Exception as e:
print("!" * 100)
print(f"Exception {repr(e)} caught on rank {rank}!")
print(traceback.format_exc())
print(
"Adding positive infinity to the imaginaty part of the selfenergy at the last matsubara frequency.",
flush=True,
)
print("!" * 100)
cluster.sig[:, :, -1] += 1j * np.inf
er = -1
comm.Abort(er)
else:
if rank == 0:
print("Self energy calculated! impurityModel shutting down.", flush=True)
sys.stdout.close()
sys.stdout = stdout_save
return er
def fixed_peak_dc(h0_op, dc_struct, rank, verbose, dense_cutoff):
N0 = dc_struct.nominal_occ
delta_impurity_occ, delta_valence_occ, delta_conduction_occ = dc_struct.delta_occ
peak_position = dc_struct.peak_position
num_valence_bath_states, num_conduction_bath_states = dc_struct.bath_states
sum_bath_states = {l: num_valence_bath_states[l] + num_conduction_bath_states[l] for l in num_valence_bath_states}
l = list(lv for lv in N0[0])[0]
u = finite.getUop_from_rspt_u4(dc_struct.u4)
Np = ({l: N0[0][l] + 1 for l in N0[0]}, N0[1], N0[2])
Nm = ({l: N0[0][l] - 1 for l in N0[0]}, N0[1], N0[2])
if peak_position >= 0:
basis_upper = CIPSI_Basis(
ls=list(N0[0].keys()),
valence_baths=num_valence_bath_states,
conduction_baths=num_conduction_bath_states,
delta_valence_occ=delta_valence_occ,
delta_conduction_occ=delta_conduction_occ,
delta_impurity_occ=delta_impurity_occ,
nominal_impurity_occ=Np[0],
truncation_threshold=1e9,
verbose=False and verbose,
comm=MPI.COMM_WORLD,
spin_flip_dj=dc_struct.spin_flip_dj,
)
basis_lower = CIPSI_Basis(
ls=list(N0[0].keys()),
valence_baths=num_valence_bath_states,
conduction_baths=num_conduction_bath_states,
delta_valence_occ=delta_valence_occ,
delta_conduction_occ=delta_conduction_occ,
delta_impurity_occ=delta_impurity_occ,
nominal_impurity_occ=N0[0],
truncation_threshold=1e9,
verbose=False and verbose,
comm=MPI.COMM_WORLD,
spin_flip_dj=dc_struct.spin_flip_dj,
)
else:
basis_upper = CIPSI_Basis(
ls=list(N0[0].keys()),
valence_baths=num_valence_bath_states,
conduction_baths=num_conduction_bath_states,
delta_valence_occ=delta_valence_occ,
delta_conduction_occ=delta_conduction_occ,
delta_impurity_occ=delta_impurity_occ,
nominal_impurity_occ=N0[0],
truncation_threshold=1e9,
verbose=False and verbose,
comm=MPI.COMM_WORLD,
spin_flip_dj=dc_struct.spin_flip_dj,
)
basis_lower = CIPSI_Basis(
ls=list(N0[0].keys()),
valence_baths=num_valence_bath_states,
conduction_baths=num_conduction_bath_states,
delta_valence_occ=delta_valence_occ,
delta_conduction_occ=delta_conduction_occ,
delta_impurity_occ=delta_impurity_occ,
nominal_impurity_occ=Nm[0],
truncation_threshold=1e9,
verbose=False and verbose,
comm=MPI.COMM_WORLD,
spin_flip_dj=dc_struct.spin_flip_dj,
)
def F(dc_trial):
bu = basis_upper.copy()
bl = basis_lower.copy()
dc_op = {(((l, s, m), "c"), ((l, s, m), "a")): -dc_trial for m in range(-l, l + 1) for s in range(2)}
h_op_c = finite.addOps([h0_op, u, dc_op])
h_op_i = finite.c2i_op(sum_bath_states, h_op_c)
h_dict = bu.expand(h_op_i, dense_cutoff=dense_cutoff, de2_min=1e-6)
h = bu.build_sparse_matrix(h_op_i, h_dict) if bu.size > dense_cutoff else bu.build_dense_matrix(h_op_i, h_dict)
e_upper = finite.eigensystem_new(
h,
e_max=0,
k=1,
eigenValueTol=1e-6,
verbose=verbose,
return_eigvecs=False,
dense_cutoff=dense_cutoff,
)
h_dict = bl.expand(h_op_i, dense_cutoff=dense_cutoff, de2_min=1e-6)
h = bl.build_sparse_matrix(h_op_i, h_dict) if bl.size > dense_cutoff else bl.build_dense_matrix(h_op_i, h_dict)
e_lower = finite.eigensystem_new(
h,
e_max=0,
k=1,
eigenValueTol=1e-6,
verbose=verbose,
return_eigvecs=False,
dense_cutoff=dense_cutoff,
)
return e_upper[0] - e_lower[0] - peak_position
# res = sp.optimize.root_scalar(F, x0=dc_struct.dc_guess)
# dc = res.root
dc = sp.optimize.newton(F, x0=np.real(dc_struct.dc_guess))
if verbose:
print(f"Peak position {dc_struct.peak_position}")
print(f"DC guess {dc_struct.dc_guess}")
print(f"dc found : {dc}")
return dc * np.identity(2 * (2 * l + 1), dtype=complex)
def get_ed_h0(
h_dft,
hyb,
corr_to_cf,
bath_states_per_orbital,
w,
eim,
gamma=0.001,
exp_weight=2,
imag_only=False,
valence_bath_only=True,
label=None,
save_baths_and_hopping=False,
verbose=True,
comm=None,
):
"""
Calculate the non-interacting hamiltonian, h0, for use in exact diagonalization.
Bath states are fitted to the real frequency hybridization function.
In block form h0 can be written
[ h_dft V^+ ]
[ V Eb ],
where h_dft is the dft hamiltonian projected onto the correlated orbitals, V is
the hopping amplitudes between the impurity and the bath, and Eb is a diagonal
matrix with energies of the bath states along the diagonal.
Parameters:
hyb -- The real frequency hybridiaztion function. Used to fit the bath states.
hdft -- The DFT hamiltonian, projected onto the impurity orbitals.
bath_states -- Number of bath states to fit per impurity orbital.
rot_spherical -- Transformation matrix to transform to spherical harmonics basis.
w -- Real frequency mesh.
eim -- All real frequency quantities are evaluated i*eim above the real frequency axis.
gamma -- Regularization parameter.
imag_only -- Only fit the imaginary part of the hybridization function, default: False.
valence_bath_only -- Only fit bath stated in the valence band, default: True.
label -- Label for the cluster, used for saving a copy of the Hamiltonian that can be plugged into the Matsubara
ED solver in RSPr, default: None,
Returns:
h0 -- The non-interacting impurity hamiltonian in operator form.
eb -- The bath states used for fitting the hybridization function.
"""
if comm.rank == 0:
with open(f"hyb-in-{label}.npy", "wb") as f:
np.save(f, hyb)
if comm.rank == 0:
# if bath_states_per_orbital == 0:
# eb = np.empty((0,), dtype=float)
# v = np.empty((0, hyb.shape[1]), dtype=complex)
try:
with open(f"impurityModel_bath_energies_and_hopping_parameters_{label}.npy", "rb") as f:
eb = np.load(f)
v = np.load(f)
remove(f"impurityModel_bath_energies_and_hopping_parameters_{label}.npy")
except FileNotFoundError:
eb = None
v = None
except ValueError:
remove(f"impurityModel_bath_energies_and_hopping_parameters_{label}.npy")
eb = None
v = None
eb = comm.bcast(eb if comm.rank == 0 else None)
v = comm.bcast(v if comm.rank == 0 else None)
if eb is not None and verbose:
print(
f"Read bath energies and hopping parameters from impurityModel_bath_energies_and_hopping_parameters_{label}.npy"
)
if eb is None and v is None:
eb, v = hf.fit_hyb(
w,
eim,
hyb,
bath_states_per_orbital,
gamma=gamma,
exp_weight=exp_weight,
imag_only=imag_only,
x_lim=(w[0], 0 if valence_bath_only else w[-1]),
verbose=verbose,
comm=comm,
new_v=True,
)
sort_indices = np.argsort(eb, kind="stable")
eb = eb[sort_indices]
v = v[sort_indices]
mask = np.any(np.abs(v) ** 2 / eim > 1e-10, axis=1)
v = v[mask]
eb = eb[mask]
if save_baths_and_hopping:
if comm is not None and comm.rank == 0:
with open(f"impurityModel_bath_energies_and_hopping_parameters_{label}.npy", "wb") as f:
np.save(f, eb)
np.save(f, v)
if verbose:
fit_hyb = offdiagonal.get_hyb(w + eim * 1j, eb, v)
save_Greens_function(rotate_Greens_function(fit_hyb, np.conj(corr_to_cf.T)), w, f"{label}-hyb-fit")
if verbose:
print("DFT hamiltonian in correlated basis")
matrix_print(rotate_matrix(h_dft, np.conj(corr_to_cf.T)))
print("DFT hamiltonian in CF basis")
matrix_print(h_dft)
print("Hopping parameters in CF basis")
matrix_print(v)
print("Bath state energies")
print(np.array_str(eb, max_line_width=1000, precision=4, suppress_small=False))
n_orb = h_dft.shape[0]
h = np.zeros((n_orb + len(eb), n_orb + len(eb)), dtype=complex)
h[:n_orb, :n_orb] = h_dft
h[:n_orb, n_orb:] = np.conj(v.T)
h[n_orb:, :n_orb] = v
np.fill_diagonal(h[n_orb:, n_orb:], eb)
if verbose:
u = np.identity(h.shape[0], dtype=complex)
u[:n_orb, :n_orb] = np.conj(corr_to_cf.T)
h_tmp = rotate_matrix(h, u) # np.conj(u.T) @ h @ u
print("DFT hamiltonian, with baths")
matrix_print(h_tmp)
with open(f"Ham-{label}{'-dc' if save_baths_and_hopping else ''}.inp", "w") as f:
for i in range(h_tmp.shape[0]):
for j in range(h_tmp.shape[1]):
f.write(f" 0 0 0 {i+1} {j+1} {np.real(h_tmp[i, j])} {np.imag(h_tmp[i, j])}\n")
h_op = h2imp.get_H_operator_from_dense_rspt_H_matrix(h, ang=(n_orb // 2 - 1) // 2)
return h_op, eb