-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_classifier.py
402 lines (353 loc) · 20.2 KB
/
run_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
"""BERT finetuning runner."""
from __future__ import absolute_import, division, print_function
import argparse
import os
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset)
from tqdm import tqdm, trange
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE,cached_path
from model import BertForSequenceClassification, BertConfig, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from utils import *
import pickle
from sklearn.metrics import precision_score, recall_score, f1_score
import matplotlib.pyplot as plt
import itertools
from sklearn.metrics import confusion_matrix,accuracy_score
from sklearn import metrics
#单GPU
os.environ["CUDA_VISIBLE_DEVICES"]="1"
"""BERT finetuning runner."""
def main(i):
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir", default='data/text', type=str,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_model", default='pre-trained BERT', type=str,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
"bert-base-multilingual-cased, bert-base-chinese.")
parser.add_argument("--task_name", default='Multi', type=str,
help="The name of the task to train.")
parser.add_argument("--output_dir", default='CM-BERT_output', type=str,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length", default=50, type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train", default=True,
help="Whether to run training.'store_true'")
parser.add_argument("--do_test", default=True,
help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case", default=True,
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size", default=24, type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size", default=24, type=int,
help="Total batch size for eval.")
parser.add_argument("--test_batch_size", default=24, type=int,
help="Total batch size for test.")
parser.add_argument("--learning_rate", default=2e-5, type=float,
help="The initial learning rate for Adam.5e-5")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion", default=0.1, type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda", action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--seed', type=int, default=11111,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
args = parser.parse_args()
processors = {
"multi": PgProcessor,
}
num_labels_task = {
"multi": 1,
}
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = 2
logger.info("device: {} n_gpu: {}".format(device, n_gpu))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
seed_num = np.random.randint(1,10000)
random.seed(seed_num)
np.random.seed(seed_num)
torch.manual_seed(seed_num)
if n_gpu > 0:
torch.cuda.manual_seed_all(seed_num)
if not args.do_train and not args.do_test:
raise ValueError("At least one of `do_train` or `do_test` must be True.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
task_name = args.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
num_labels = num_labels_task[task_name]
label_list = processor.get_labels()
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
train_examples = None
num_train_optimization_steps = None
if args.do_train:
train_examples = processor.get_train_examples(args.data_dir)
num_train_optimization_steps = int(len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
# Prepare model
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format("-1"))
##############################################################################################################
model = BertForSequenceClassification.from_pretrained(args.bert_model, cache_dir=cache_dir, num_labels = num_labels)
# Freezing all layer except for last transformer layer and its follows
for name, param in model.named_parameters():
param.requires_grad = False
if "encoder.layer.0" in name or "encoder.layer.1" in name:
param.requires_grad = True
if "encoder.layer.2" in name or "encoder.layer.3" in name :
param.requires_grad = True
if "encoder.layer.4" in name or "encoder.layer.5" in name:
param.requires_grad = True
if "encoder.layer.6" in name or "encoder.layer.7" in name:
param.requires_grad = True
if "encoder.layer.8" in name or "encoder.layer.9" in name :
param.requires_grad = True
if "encoder.layer.10" in name or "encoder.layer.11" in name:
param.requires_grad = True
if "BertFinetun" in name or "pooler" in name:
param.requires_grad = True
##############################################################################################################
model.to(device)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
new_decay = ['BertFine']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay) and not any(np in n for np in new_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
{'params':[p for n, p in param_optimizer if not any(nd in n for nd in no_decay )and any(np in n for np in new_decay)],'lr':0.01}
]
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
nb_tr_steps = 0
tr_loss = 0
train_audio,valid_audio,test_audio= pickle.load(open('data/audio/MOSI_cmu_audio_CLS.pickle','rb'))
max_acc = 0
min_loss = 100
if args.do_train:
import pdb;pdb.set_trace()
train_features = convert_examples_to_features(train_examples, label_list, args.max_seq_length, tokenizer)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
all_train_audio = torch.tensor(train_audio, dtype=torch.float32)
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float32)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_train_audio, all_label_ids)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
## Evaluate for each epcoh
eval_examples = processor.get_dev_examples(args.data_dir)
eval_features = convert_examples_to_features(eval_examples, label_list, args.max_seq_length, tokenizer)
all_valid_audio = torch.tensor(valid_audio, dtype=torch.float32,requires_grad=True)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float32)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,all_valid_audio,all_label_ids)
# Run prediction for full data
# import pdb;
# pdb.set_trace()
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
model.train()
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
import pdb;pdb.set_trace()
input_ids, input_mask, segment_ids, all_train_audio, label_ids = batch
all_train_audio = torch.ones([24, 29, 640], dtype=torch.float64)
input_ids = torch.ones([24,50], dtype=torch.int64)
segment_ids = torch.zeros([24,50], dtype=torch.int64)
input_mask = torch.zeros([24,50], dtype=torch.int64)
label_ids = torch.ones([24,50], dtype=torch.float32)
loss = model(input_ids, all_train_audio,segment_ids, input_mask, label_ids)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
global_step += 1
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for input_ids, input_mask, segment_ids,all_valid_audio,label_ids in tqdm(eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
all_valid_audio = all_valid_audio.to(device)
with torch.no_grad():
tmp_eval_loss = model(input_ids, all_valid_audio,segment_ids, input_mask,label_ids)
logits,_,_ = model(input_ids,all_valid_audio, segment_ids, input_mask)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
eval_loss += tmp_eval_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
loss = tr_loss/nb_tr_steps if args.do_train else None
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'global_step': global_step,
'loss': loss}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
# Save a trained model and the associated configuration
if eval_loss<min_loss:
min_loss = eval_loss
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
with open(output_config_file, 'w') as f:
f.write(model_to_save.config.to_json_string())
if args.do_test:
## Evaluate for each epcoh
test_examples = processor.get_test_examples(args.data_dir)
test_features = convert_examples_to_features(test_examples, label_list, args.max_seq_length, tokenizer)
logger.info("")
logger.info("***** Running test *****")
logger.info(" Num examples = %d", len(test_examples))
logger.info(" Batch size = %d", args.test_batch_size)
all_test_audio = torch.tensor(test_audio, dtype=torch.float32,requires_grad=True)
all_input_ids = torch.tensor([f.input_ids for f in test_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in test_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in test_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in test_features], dtype=torch.float32)
test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids,all_test_audio)
# Run prediction for full data
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.test_batch_size)
model = BertForSequenceClassification.from_pretrained(args.bert_model, cache_dir=cache_dir, num_labels = num_labels)
model.load_state_dict(torch.load('CM-BERT_output/pytorch_model.bin'))
model.to(device)
model.eval()
test_loss, test_accuracy = 0, 0
nb_test_steps, nb_test_examples = 0, 0
predict_list = []
truth_list = []
text_attention_list = []
fusion_attention_list = []
with torch.no_grad():
for input_ids, input_mask, segment_ids, label_ids, all_test_audio in tqdm(test_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
all_test_audio = all_test_audio.to(device)
with torch.no_grad():
tmp_test_loss = model(input_ids, all_test_audio,segment_ids, input_mask, label_ids)
logits,text_attention,fusion_attention = model(input_ids, all_test_audio,segment_ids, input_mask)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
text_attention = text_attention.cpu().numpy()
fusion_attention = fusion_attention.cpu().numpy()
test_loss += tmp_test_loss.mean().item()
for i in range(len(logits)):
predict_list.append(logits[i])
truth_list.append(label_ids[i])
text_attention_list.append(text_attention[i])
fusion_attention_list.append(fusion_attention[i])
nb_test_examples += input_ids.size(0)
nb_test_steps += 1
exclude_zero = False
non_zeros = np.array([i for i, e in enumerate(predict_list) if e != 0 or (not exclude_zero)])
predict_list = np.array(predict_list).reshape(-1)
truth_list = np.array(truth_list)
predict_list1 = (predict_list[non_zeros] > 0)
truth_list1 = (truth_list[non_zeros] > 0)
test_loss = test_loss / nb_test_steps
test_preds_a7 = np.clip(predict_list, a_min=-3., a_max=3.)
test_truth_a7 = np.clip(truth_list, a_min=-3., a_max=3.)
acc7 = accuracy_7(test_preds_a7,test_truth_a7)
f_score = f1_score(predict_list1, truth_list1, average='weighted')
acc = accuracy_score(truth_list1, predict_list1)
corr = np.corrcoef(predict_list, truth_list)[0][1]
mae = np.mean(np.absolute(predict_list - truth_list))
loss = tr_loss/nb_tr_steps if args.do_train else None
results = {'test_loss': test_loss,
'global_step': global_step,
'loss': loss,
'acc':acc,
'F1':f_score,
'mae':mae,
'corr':corr,
'acc7':acc7}
logger.info("***** test results *****")
for key in sorted(results.keys()):
logger.info(" %s = %s", key, str(results[key]))
return results
if __name__ == "__main__":
acc_list = []
F1_list = []
mae_list= []
corr_list = []
acc7_list = []
for i in range(5):
os.system('mkdir CM-BERT_output')
results = main(i)
acc_list.append(str(results['acc']))
F1_list.append(str(results['F1']))
mae_list.append(str(results['mae']))
corr_list.append(str(results['corr']))
acc7_list.append(str(results['acc7']))
os.system('rm -r CM-BERT_output')
acc_array = np.array(acc_list).astype(float)
F1_array = np.array(F1_list).astype(float)
mae_array = np.array(mae_list).astype(float)
corr_array = np.array(corr_list).astype(float)
acc7_array = np.array(acc7_list).astype(float)
acc_list.append(np.mean(acc_array))
F1_list.append(np.mean(F1_array))
mae_list.append(np.mean(mae_array))
corr_list.append(np.mean(corr_array))
acc7_list.append(np.mean(acc7_array))
print('acc:',acc_list)
print('F1:',F1_list)
print('mae:',mae_list)
print('corr:',corr_list)
print('acc7:',acc7_list)