-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_ltr.py
156 lines (120 loc) · 5.05 KB
/
run_ltr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from pathlib import Path
from datetime import datetime
import pandas as pd
import numpy as np
import torch
from torch import cuda
from torch.utils.data import Dataset, DataLoader
from collections import defaultdict
from model import CrossModalBERT
from dataloader import BaseDataset, EvaluateDataset
def evaluate(model, test_dataloader, tokenizer, window_size):
recall = 0
model.eval()
index_corrects = np.repeat(np.arange(0, test_dataloader.dataset.__len__() / 5), 5).reshape(
test_dataloader.dataset.__len__(), 1)
with torch.no_grad():
classname = {0: 'Irrelevant', 1: 'Relevant'}
correct_pred = defaultdict(lambda: 0)
total_pred = defaultdict(lambda: 0)
for inputs in test_dataloader:
y_pred = []
expert = inputs[0]["expert"]
data = tokenizer(
inputs[0]["captions"],
truncation=True,
return_tensors="pt",
max_length=150,
padding='max_length')
index_true = inputs[0]["label_index"]
labels = inputs[0]["label"]
if labels is not None and index_true < window_size:
labels = torch.tensor(
labels,
dtype=torch.long)
input_ids = data["input_ids"]
input_ids = input_ids.repeat(expert.shape[0], 1)
attention_mask = data["attention_mask"]
attention_mask = attention_mask.repeat(expert.shape[0], 1)
torch_zeros = torch.zeros((window_size, 1, 145, 145))
torch_zeros[:, 0, :128, :] = expert[:window_size].reshape((window_size, 128, 145))
for minibatch in range(int(window_size / 100)):
range_index = list(range(100 * minibatch, 100 * (minibatch + 1)))
target = labels[range_index]
output = model(
input_ids[range_index],
attention_mask[range_index],
torch_zeros[range_index])
y_pred += list(output[:, 1].to('cpu'))
top_10_rerank = np.argsort(y_pred)[:10] == index_true
recall_consult = top_10_rerank.sum()
else:
recall_consult = 0
recall += recall_consult / test_dataloader.dataset.__len__()
return recall
def main(n_epochs):
window_size = 300
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#load data (train/test)
evaluate_dataset = EvaluateDataset("AA")
evaluate_dataloader = DataLoader(
dataset=evaluate_dataset,
batch_size=1,
num_workers=1,
shuffle=True,
collate_fn=evaluate_dataset.collate_data,
)
train_dataset = BaseDataset("AA")
train_dataloader = DataLoader(
dataset=train_dataset,
batch_size=1,
num_workers=1,
shuffle=True,
collate_fn=dl.collate_data,
)
#load model
optimizer = torch.optim.Adam(params=model.parameters(), lr=LEARNING_RATE)
loss = torch.nn.CrossEntropyLoss()
model = CrossModalBERT()
model.to('cpu')
model.train()
for epoch in range(n_epochs):
for step, batch in enumerate(train_dataloader):
expert = batch[0]["expert"]
data = tokenizer(
batch[0]["captions"],
truncation=True,
return_tensors="pt",
max_length=150,
padding='max_length')
index_true = batch[0]["label_index"]
labels = batch[0]["label"]
if labels is not None and index_true < window_size:
labels = torch.tensor(
labels,
dtype=torch.long)
input_ids = data["input_ids"]
input_ids = input_ids.repeat(expert.shape[0], 1)
attention_mask = data["attention_mask"]
attention_mask = attention_mask.repeat(expert.shape[0], 1)
torch_zeros = torch.zeros((window_size, 1, 145, 145))
torch_zeros[:, 0, :128, :] = expert[:window_size].reshape((window_size, 128, 145))
for minibatch in range(int(window_size / 50)):
range_index = list(range(50 * (minibatch), 50 * (minibatch + 1)))
range_index.append(index_true)
target = labels[range_index]
output = model(
input_ids[range_index],
attention_mask[range_index],
torch_zeros[range_index])
optimizer.zero_grad()
l = loss(output, target)
l.backward()
optimizer.step()
if step % 10 == 0:
print(f'Epoch: {epoch}, {step}/{len(dataloader)}, Loss: {l.item()}')
recall = evaluate(model, evaluate_dataloader, tokenizer, 100)
print(f"Epoch:{epoch}, evaluate recall: {recall}")
if __name__ == "__main__":
n_epochs = 100
main(n_epochs)