From 16589c925752402726261e6e170a420a6b903629 Mon Sep 17 00:00:00 2001 From: jorenham Date: Sun, 26 Nov 2023 23:50:32 +0100 Subject: [PATCH] Merged Pareto IV and Burr XII --- docs/distributions.md | 80 +++++++++++++++++-------------------------- 1 file changed, 31 insertions(+), 49 deletions(-) diff --git a/docs/distributions.md b/docs/distributions.md index 7010780a..5b420bb9 100644 --- a/docs/distributions.md +++ b/docs/distributions.md @@ -865,46 +865,9 @@ Note that the GPD is a reparametrized [\( q \)-exponential distribution \( q = (2 \alpha + 1) / (\alpha + 1) \) and \( \lambda = 1 / (2 - q) \) s.t. \( \alpha \neq -1 \) and \( q < 2 \). -### Pareto Type IV +### Burr III / Dagum -The [*Pareto Type IV*](https://wikipedia.org/wiki/Pareto_distribution) has two -shape parameters \( \alpha \in \mathbb{R} \) and -\( \gamma \in \mathbb{R}_{>0} \), and scale parameter \( \beta \). -For \( x \ge 0 \), the CDF and its inverse (the PPF) are - -\[ -\begin{align*} - F(x) - &= 1 - \left( - 1 + \left(\frac x \beta\right)^{\frac 1 \gamma} - \right)^{-\alpha} \\ - x(F) - &= \beta \left( - (1 - F)^{-1 / \alpha} - 1 - \right)^\gamma -\end{align*} -\] - -When \( \alpha > \gamma \), the trimmed L-moments are found to be: - -\[ - \begin{equation} - \tlmoment{s,t}{r} - = \frac{\beta \gamma}{r} - \sum_{k = t + 1}^{r + s + t} - (-1)^{k - t - 1} - \binom{r + k - 2}{r + t - 1} - \binom{r + s + t}{k} - \B(\gamma,\ k \alpha - \gamma) - \label{eq:lr_pareto4} - \end{equation} -\] - -This distribution is currently not implemented in [`scipy.stats`][scipy.stats]. - -### Burr Type III - -The *Burr type III* distribution, also known as the +The *Burr III* distribution, also known as the [*Dagum distribution*](https://wikipedia.org/wiki/Dagum_distribution), has two shape parameters \( \alpha \) and \( \beta \), both restricted to the positive reals @@ -937,23 +900,33 @@ For \( \alpha > 1 \), the general L-moments are: \end{equation} \] -The Burr Type III distribution is implemented in +The Burr III distribution is implemented in [`scipy.stats.burr`][scipy.stats.burr], where the shape parameters `c` and `d` correspond to \( \alpha \) and \( \beta \), respectively. +Equivalently, [`scipy.stats.mielke`][scipy.stats.mielke] can be used, by +setting `k` and `s` to \( \alpha \beta \) and \( \alpha \), respectively. -### Burr Type XII +The special case where \( \beta = 1 \) is known as the +[*log-logistic*](https://wikipedia.org/wiki/Log-logistic_distribution) +distribution -Just like Kumaraswamy's distribution, the -[*Burr Type XII distribution*](https://wikipedia.org/wiki/Burr_distribution) +### Burr XII / Pareto IV + +The +[*Burr XII distribution*](https://wikipedia.org/wiki/Burr_distribution) has two shape parameters \( \alpha \) and \( \beta \), both restricted to the -positive reals. +positive reals. It is also known as the *Singh-Maddala distribution*. +The alternative parametrization \( \alpha \mapsto 1 / \gamma \), where +\( \gamma > 0 \), is known as the (standard) type IV +[*Pareto distribution*](https://wikipedia.org/wiki/Pareto_distribution) + -The distribution functions are for \( x > 0 \) defined as: +The distribution functions for \( x > 0 \) are defined as: \[ \begin{align*} - F(x) &= 1 - (1 - x^\alpha)^{-\beta} \\ - x(F) &= \bigl(1 - (1 - F)^{-1/\beta} \bigr)^{1/\alpha} + F(x) &= 1 - (1 + x^\alpha)^{-\beta} \\ + x(F) &= \bigl((1 - F)^{-1/\beta} - 1 \bigr)^{1/\alpha} \end{align*} \] @@ -973,10 +946,20 @@ When \( \beta > 1 / \alpha \), the general \( r \)-th trimmed L-moment is: \end{equation} \] -The Burr Type XII distribution is implemented in +This distribution is implemented in [`scipy.stats.burr12`][scipy.stats.burr12], where the shape parameters `c` and `d` correspond to \( \alpha \) and \( \beta \), respectively. +The Burr XII and Burr III distributions are related as \( Y = 1 / X \), where +\( X \) and \( Y \) are random variables with Burr XII \( (\alpha, \beta) \) +and Burr III \( (1 / \alpha, \beta) \) +distributions (or vice-versa), respectively. + +In the special case where \( \alpha = 1 \) is known as the +[*Lomax distribution*](https://wikipedia.org/wiki/Lomax_distribution). This +has been implemented as [scipy.stats.lomax][scipy.stats.lomax], where the +parameter `c` corresponds to \( \beta \). + ### Kumaraswamy For [Kumaraswamy's distribution @@ -1024,7 +1007,6 @@ quantile function (PPF) is defined to be x(F) = \frac \alpha \beta \bigl(1 - (1 - F)^\beta\bigr) - \frac \gamma \delta \bigl(1 - (1 - F)^{-\delta}\bigr) - + \mu \] Each of the scale- \( \alpha, \gamma \) and shape parameters