This repository was archived by the owner on Feb 8, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
34 lines (34 loc) · 1.77 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Package: btbtemp
Type: Package
Title: Beyond the Border - Kernel Density Estimation for Urban Geography
Description: The kernelSmoothing() function allows you to square and smooth geolocated data. It calculates a classical kernel smoothing (conservative) or a geographically weighted median. There are four major call modes of the function.
The first call mode is kernelSmoothing(obs, epsg, cellsize, bandwith) for a classical kernel smoothing and automatic grid.
The second call mode is kernelSmoothing(obs, epsg, cellsize, bandwith, quantiles) for a geographically weighted median and automatic grid.
The third call mode is kernelSmoothing(obs, epsg, cellsize, bandwith, centroids) for a classical kernel smoothing and user grid.
The fourth call mode is kernelSmoothing(obs, epsg, cellsize, bandwith, quantiles, centroids) for a geographically weighted median and user grid.
Geographically weighted summary statistics : a framework for localised exploratory data analysis, C.Brunsdon & al., in Computers, Environment and Urban Systems C.Brunsdon & al. (2002) <doi:10.1016/S0198-9715(01)00009-6>,
Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition, Diggle, pp. 83-86, (2003) <doi:10.1080/13658816.2014.937718>.
Version: 0.2.0
Date: 2022-09-20
Author:
Arlindo Dos Santos [aut],
Francois Semecurbe [aut],
Auriane Renaud [ctb],
Cynthia Faivre [ctb],
Thierry Cornely [ctb],
Farida Marouchi [ctb],
Institut national de la statistique et des études économiques [cph]
Maintainer:
Kim Antunez <antuki.kim+cran@gmail.com>
License: GPL (>= 2)
Encoding: UTF-8
LazyData: true
Imports:
Rcpp (>= 1.0.9),
methods,
sf,
RcppParallel,
RcppArmadillo
LinkingTo: Rcpp
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.2.1