-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefault_mlp_bayes.m
168 lines (146 loc) · 5.21 KB
/
default_mlp_bayes.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
% default_mlp_bayes -
% Copyright (C) 2016 Hao Wang
% This is the code for initializing Gaussian NPN.
% It is based on code by KyungHyun Cho, Tapani Raiko, Alexander Ilin
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
%
function [M] = default_mlp_bayes (layers)
% structure
n_layers = length(layers);
M.structure.layers = layers;
% data type
M.data.binary = 1;
%M.data.binary = 0;
% output type
M.output.binary = 1;% for classification
%M.output.binary = 0; % for regression
% nonlinearity: the name of the variable will change in the later revision
% 0 - sigmoid
% 1 - tanh
% 2 - relu
M.hidden.use_tanh = 0;
% is it being initialized with a DBM?
M.dbm.use = 0;
% learning parameters
M.learning.lrate = 1e-3;
M.learning.lrate0 = 5000;
M.learning.momentum = 0;
M.learning.weight_decay = 1e-4;
M.learning.weight_decay_s = 1e-4;
M.learning.minibatch_sz = 100;
M.learning.lrate_anneal = 0.9;
M.valid_min_epochs = 10;
M.dropout.use = 0;
% by default
M.dropout.probs = cell(n_layers, 1);
for l = 1:n_layers
M.dropout.probs{l} = 0.5 * ones(layers(l), 1);
end
M.do_normalize = 0;
M.do_normalize_std = 0;
% stopping criterion
% if you happen to know some other criteria, please, do add them.
% if the criterion is zero, it won't stop unless the whole training epochs were consumed.
M.stop.criterion = 0;
% criterion == 1
M.stop.recon_error.tolerate_count = 1000;
% denoising
M.noise.drop = 0.1;
M.noise.level = 0.1;
% initializations
M.W = cell(n_layers, 1);
M.biases = cell(n_layers, 1);
% for NPN, by Hao
M.W_s = cell(n_layers, 1);
M.biases_s = cell(n_layers, 1);
M.M_s = cell(n_layers, 1);
M.piases_s = cell(n_layers, 1);
for l = 1:n_layers
M.biases{l} = zeros(layers(l), 1);
% init' small
M.piases_s{l} = -1*ones(layers(l), 1);
% init' 0
%M.piases_s{l} = -1e9*ones(layers(l), 1);
M.biases_s{l} = log(exp(M.piases_s{l})+1);
if l < n_layers
%M.W{l} = 1/sqrt(layers(l)+layers(l+1)) * randn(layers(l), layers(l+1));
M.W{l} = 2 * sqrt(6)/sqrt(layers(l)+layers(l+1)) * (rand(layers(l), layers(l+1)) - 0.5);
% init' randomly
M.W_s{l} = 1 * sqrt(6)/sqrt(layers(l)+layers(l+1)) * (rand(layers(l), layers(l+1)));
M.M_s{l} = log(exp(M.W_s{l})-1);
% init' to 0
%M.M_s{l} = -1e9*ones(size(M.W{l}));
%M.W_s{l} = log(1+exp(M.M_s{l}));
end
end
% adagrad
M.adagrad.use = 0;
M.adagrad.epsilon = 1e-8;
M.adagrad.W = cell(n_layers, 1);
M.adagrad.biases = cell(n_layers, 1);
% for NPN, by Hao
M.adagrad.M_s = cell(n_layers, 1);
M.adagrad.piases_s = cell(n_layers, 1);
for l = 1:n_layers
M.adagrad.biases{l} = zeros(layers(l), 1);
M.adagrad.piases_s{l} = zeros(layers(l), 1);
if l < n_layers
M.adagrad.W{l} = zeros(layers(l), layers(l+1));
M.adagrad.M_s{l} = zeros(layers(l), layers(l+1));
end
end
M.adadelta.use = 0;
M.adadelta.momentum = 0.99;
M.adadelta.epsilon = 1e-6;
M.adadelta.gW = cell(n_layers, 1);
M.adadelta.gbiases = cell(n_layers, 1);
M.adadelta.W = cell(n_layers, 1);
M.adadelta.biases = cell(n_layers, 1);
% for NPN, by Hao
M.adadelta.gM_s = cell(n_layers, 1);
M.adadelta.gpiases_s = cell(n_layers, 1);
M.adadelta.M_s = cell(n_layers, 1);
M.adadelta.piases_s = cell(n_layers, 1);
for l = 1:n_layers
M.adadelta.gbiases{l} = zeros(layers(l), 1);
M.adadelta.biases{l} = zeros(layers(l), 1);
M.adadelta.gpiases_s{l} = zeros(layers(l), 1);
M.adadelta.piases_s{l} = zeros(layers(l), 1);
if l < n_layers
M.adadelta.gW{l} = zeros(layers(l), layers(l+1));
M.adadelta.W{l} = zeros(layers(l), layers(l+1));
M.adadelta.gM_s{l} = zeros(layers(l), layers(l+1));
M.adadelta.M_s{l} = zeros(layers(l), layers(l+1));
end
end
% iteration
M.iteration.n_epochs = 100;
M.iteration.n_updates = 0;
% learning signals
M.signals.recon_errors = [];
M.signals.train_LL = [];
M.signals.valid_errors = [];
M.signals.lrates = [];
M.signals.n_epochs = 0;
% debug
M.verbose = 0;
M.debug.do_display = 0;
M.debug.display_interval = 10;
M.debug.display_fid = 1;
M.debug.display_function = @visualize_dae;
% hook
M.hook.per_epoch = {@save_intermediate, {'mlp.mat'}};
M.hook.per_update = {@print_n_updates, {}};