-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbackoff.go
220 lines (189 loc) · 5.47 KB
/
backoff.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
package httpc
import (
"context"
"math"
"math/rand"
"sync"
"time"
)
type (
// BackoffFunc specifies the signature of a function that returns the
// time to wait before the next call to a resource. To stop retrying
// return false in the 2nd return value.
BackoffFunc func(retry int) (time.Duration, bool)
// BackoffOptFn is a constructor func for a backoff.
BackoffOptFn func() Backoffer
// Backoffer allows callers to implement their own Backoffer strategy.
Backoffer interface {
// Next implements a BackoffFunc.
Next(retry int) (time.Duration, bool)
}
backoffKey int
)
const backoffNumKey backoffKey = -33333
// RetryNotify calls notify function with the error and wait duration
// for each failed attempt before sleep.
func retry(ctx context.Context, fn func(context.Context) error, b BackoffOptFn) error {
type retrier interface {
Retry() bool
}
var err error
var n int
backoffPolicy := b()
for {
ctx := context.WithValue(ctx, backoffNumKey, n)
err = fn(ctx)
if err == nil {
return nil
}
if r, ok := err.(retrier); ok && !r.Retry() {
return err
}
n++
wait, retry := backoffPolicy.Next(n)
if !retry {
return err
}
select {
case <-ctx.Done():
return ctx.Err()
case <-time.After(wait):
}
}
}
// Attempt returns the backoff attempt that is currently in motion.
func Attempt(ctx context.Context) (int, bool) {
attempNum, ok := ctx.Value(backoffNumKey).(int)
return attempNum, ok
}
// ZeroBackoff is a fixed backoff policy whose backoff time is always zero,
// meaning that the operation is retried immediately without waiting,
// indefinitely.
type ZeroBackoff struct {
maxCalls int
}
// NewZeroBackoff creates a zero backoff with max set calls. When set to 0,
// will backoff without end.
func NewZeroBackoff(maxCalls int) BackoffOptFn {
return func() Backoffer {
return ZeroBackoff{maxCalls: maxCalls}
}
}
// Next implements BackoffFunc for ZeroBackoff.
func (b ZeroBackoff) Next(retry int) (time.Duration, bool) {
if b.maxCalls > 0 && retry == b.maxCalls {
return 0, false
}
return 0, true
}
// StopBackoff is a fixed backoff policy that always returns false for
// Next(), meaning that the operation should never be retried.
type StopBackoff struct{}
func NewStopBackoff() BackoffOptFn {
return func() Backoffer {
return StopBackoff{}
}
}
// Next implements BackoffFunc for StopBackoff.
func (b StopBackoff) Next(retry int) (time.Duration, bool) {
return 0, false
}
// ConstantBackoff is a backoff policy that always returns the same delay.
type ConstantBackoff struct {
interval time.Duration
maxCalls int
}
// NewConstantBackoff returns a new ConstantBackoff.
func NewConstantBackoff(interval time.Duration, maxCalls int) BackoffOptFn {
return func() Backoffer {
return &ConstantBackoff{
interval: interval,
maxCalls: maxCalls,
}
}
}
// Next implements BackoffFunc for ConstantBackoff.
func (b *ConstantBackoff) Next(retry int) (time.Duration, bool) {
if b.maxCalls > 0 && retry == b.maxCalls {
return 0, false
}
return b.interval, true
}
// ExponentialBackoff implements the simple exponential backoff described by
// Douglas Thain at http://dthain.blogspot.de/2009/02/exponential-backoff-in-distributed.html.
type ExponentialBackoff struct {
t float64 // initial timeout (in msec)
f float64 // exponential factor (e.g. 2)
m float64 // maximum timeout (in msec)
maxCalls int
}
// NewExponentialBackoff returns a ExponentialBackoff backoff policy.
// Use initialTimeout to set the first/minimal interval
// and maxTimeout to set the maximum wait interval.
func NewExponentialBackoff(initialTimeout, maxTimeout time.Duration, maxCalls int) BackoffOptFn {
return func() Backoffer {
return &ExponentialBackoff{
t: float64(int64(initialTimeout / time.Millisecond)),
f: 2.0,
m: float64(int64(maxTimeout / time.Millisecond)),
maxCalls: maxCalls,
}
}
}
// Next implements BackoffFunc for ExponentialBackoff.
func (b *ExponentialBackoff) Next(retry int) (time.Duration, bool) {
if b.maxCalls > 0 && retry == b.maxCalls {
return 0, false
}
r := 1.0 + rand.Float64() // random number in [1..2]
m := math.Min(r*b.t*math.Pow(b.f, float64(retry)), b.m)
if m >= b.m {
return 0, false
}
d := time.Duration(int64(m)) * time.Millisecond
return d, true
}
// SimpleBackoff takes a list of fixed values for backoff intervals.
// Each call to Next returns the next value from that fixed list.
// After each value is returned, subsequent calls to Next will only return
// the last element. The values are optionally "jittered" (off by default).
type SimpleBackoff struct {
sync.Mutex
ticks []int
jitter bool
maxCalls int
}
// NewSimpleBackoff creates a SimpleBackoff algorithm with the specified
// list of fixed intervals in milliseconds.
func NewSimpleBackoff(maxCalls int, jitter bool, ticks ...int) BackoffOptFn {
return func() Backoffer {
return &SimpleBackoff{
ticks: ticks,
jitter: jitter,
maxCalls: maxCalls,
}
}
}
// Next implements BackoffFunc for SimpleBackoff.
func (b *SimpleBackoff) Next(retry int) (time.Duration, bool) {
if b.maxCalls > 0 && retry == b.maxCalls {
return 0, false
}
b.Lock()
defer b.Unlock()
if retry >= len(b.ticks) {
return 0, false
}
ms := b.ticks[retry]
if b.jitter {
ms = jitter(ms)
}
return time.Duration(ms) * time.Millisecond, true
}
// jitter randomizes the interval to return a value of [0.5*millis .. 1.5*millis].
func jitter(millis int) int {
if millis <= 0 {
return 0
}
return millis/2 + rand.Intn(millis)
}