-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
408 lines (341 loc) · 15.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import os
import sys
import csv
import math
import time
import argparse
import numpy as np
import pandas as pd
from einops import rearrange
from torchvision import transforms
from torch.optim import AdamW
from torch.utils.data import DataLoader
from scipy.spatial.distance import pdist, squareform
sys.path.append(os.getcwd())
from utils import *
from models.load_models import get_model
from models.fid_classifier import ClassifierForFID
from models.GaussianDiffusion import GaussianDiffusion
from utils.metrics import CMD_helper, CMD_pose
from utils.metrics import FID_helper, FID_pose
from utils.metrics import APD, APDE, ADE, FDE, MMADE, MMFDE
from data_utils.transforms import calculate_stats, load_stats
from data_utils.dataset_h36m import DatasetH36M, generate_h36_loss_weights
from data_utils.dataset_amass import DatasetAMASS, generate_amass_loss_weights
from data_utils.transforms import DataAugmentation
def generate_loss_weight(cfg):
if cfg.dataset == 'h36m':
gen_weight = generate_h36_loss_weights
else:
gen_weight = generate_amass_loss_weights
# history recon weight
in_weights = gen_weight(cfg.t_his, scale=cfg.loss_weight_scale)
# future prediction weight
out_weights = gen_weight(cfg.t_pred, scale=cfg.loss_weight_scale)
loss_weights = torch.cat((in_weights, out_weights), dim=0)
return loss_weights
class Trainer(object):
def __init__(
self,
dataset,
diffusion_model,
cfg,
train_batch_size=16,
train_lr=1e-4,
weight_decay=0,
actions='all',
):
super().__init__()
self.model = diffusion_model
self.device = next(self.model.parameters()).device
self.cfg = cfg
self.batch_size = train_batch_size
self.input_n = cfg.t_his
self.output_n = cfg.t_pred
self.dtype = torch.float32 if self.cfg.dtype == 'float32' else torch.float64
# dataset and dataloader initialization
transform = transforms.Compose([DataAugmentation(cfg.rota_prob)])
test_transform = None
stat_dataset = dataset('train', self.input_n, self.output_n, augmentation=cfg.augmentation, stride=cfg.stride, transform=transform, dtype=cfg.dtype)
# info saving
stats_folder = os.path.join('auxiliar/datasets/', cfg.dataset, "stats", stat_dataset.stat_id)
mmapd_path = os.path.join('auxiliar/datasets/', cfg.dataset, 'mmapd_GT.csv')
if not os.path.exists(stats_folder) or len(os.listdir(stats_folder)) == 0:
print('Calculating stats...')
calculate_stats(stat_dataset)
else:
print('Stats precomputed.')
print('Loading stats...')
self.mean, self.std, self.minv, self.maxv = load_stats(stat_dataset)
self.mean_torch = torch.from_numpy(self.mean[1:,:]).to(self.device).to(self.dtype)
self.std_torch = torch.from_numpy(self.std[1:,:]).to(self.device).to(self.dtype)
self.minv_torch = torch.from_numpy(self.minv[1:,:]).to(self.device).to(self.dtype)
self.maxv_torch = torch.from_numpy(self.maxv[1:,:]).to(self.device).to(self.dtype)
print('Preparing datasets...')
self.train_dataset = dataset('train', self.input_n, self.output_n, augmentation=cfg.augmentation, stride=cfg.stride, transform=transform, dtype=cfg.dtype)
self.train_dataloader = DataLoader(dataset=self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=0, pin_memory=True)
# NOTE: test partition: can be seen only once
self.eval_dataset = dataset('test', self.input_n, self.output_n, augmentation=0, stride=1, transform=None, dtype=cfg.dtype)
self.eval_dataloader = DataLoader(dataset=self.eval_dataset, batch_size=1, shuffle=False, num_workers=0, pin_memory=True)
# multimodal GT
print('Calculating mmGT...')
self.multimodal_traj = self.get_multimodal_gt()
# APDE computation loading
self.mmapd = self.get_mmapd(mmapd_path)
# FID classifier
if self.cfg.dataset == 'h36m':
print('Loading FID classifier...')
self.classifier_for_fid = self.get_classifier()
else:
print('No FID classifier available...')
self.classifier_for_fid = None
# optimizer
self.opt = AdamW(self.model.parameters(), lr=train_lr, betas=(0.9, 0.99), weight_decay=weight_decay) # weight_decay is 0, same as Adam Pytorch Implementation
self.scheduler = get_scheduler(self.opt, policy=cfg.sched_policy, nepoch_fix=cfg.num_epoch_fix_lr, nepoch=cfg.train_epoch)
# epoch counter state
self.epoch = 0
self.train_loss_list = []
print('Trainer initialization done.')
def save(self, to_save_path):
data = {
'epoch': self.epoch,
'train_loss_list': self.train_loss_list,
'model': self.model.state_dict(),
'opt': self.opt.state_dict(),
'sched': self.scheduler.state_dict(),
}
torch.save(data, to_save_path)
return
def load(self, to_load_path):
device = self.device
data = torch.load(to_load_path, map_location=device)
self.epoch = data['epoch']
self.train_loss_list = data['train_loss_list']
self.model.load_state_dict(data['model'])
self.opt.load_state_dict(data['opt'])
self.scheduler.load_state_dict(data['sched'])
print(">>> finish loading model ckpt from path '{}'".format(to_load_path))
return
def train(self):
self.model.train()
t_s = time.time()
epoch_loss = 0.
epoch_iter = 0
epoch_loss_info = {}
for traj_np, extra in self.train_dataloader:
traj = traj_np[..., 1:, :].reshape(traj_np.shape[0], traj_np.shape[1], -1).to(self.device).to(self.dtype) # [b, t_total, 16x3]
loss, loss_info = self.model(traj, None, div_k=self.cfg.div_k, uncond=True, mmgt=None)
for key, value in loss_info.items():
if key not in epoch_loss_info:
epoch_loss_info[key] = value
else:
epoch_loss_info[key] += value
self.opt.zero_grad()
loss.backward()
self.opt.step()
epoch_loss += loss.item()
epoch_iter += 1
self.scheduler.step()
self.epoch += 1
epoch_loss /= epoch_iter
for key, value in epoch_loss_info.items():
epoch_loss_info[key] /= epoch_iter
lr = self.opt.param_groups[0]['lr']
dt = time.time() - t_s
self.train_loss_list.append(epoch_loss)
return lr, epoch_loss, epoch_loss_info, dt
def get_multimodal_gt(self):
"""
return list of tensors of shape [[num_similar, t_pred, NC]]
"""
all_data = []
for i, (data, extra) in enumerate(self.eval_dataloader): # [batch_size, t_all, num_joints, dim]
data = data[..., 1:, :].reshape(data.shape[0], data.shape[1], -1)
all_data.append(data)
all_data = np.concatenate(all_data, axis=0)
all_start_pose = all_data[:,self.input_n-1,:]
pd = squareform(pdist(all_start_pose))
traj_gt_arr = []
for i in range(pd.shape[0]):
ind = np.nonzero(pd[i] < self.cfg.multimodal_threshold)
traj_gt_arr.append(torch.from_numpy(all_data[ind][:, self.input_n:, :]).to(self.dtype))
return traj_gt_arr
def get_mmapd(self, mmapd_path):
df = pd.read_csv(mmapd_path)
mmapds = torch.as_tensor(list(df["gt_APD"]))
return mmapds
def get_classifier(self):
classifier_for_fid = ClassifierForFID(input_size=48, hidden_size=128, hidden_layer=2,
output_size=15, use_noise=None, device=self.device, dtype=self.dtype).to(self.device)
classifier_path = os.path.join("./auxiliar", "h36m_classifier.pth")
classifier_state = torch.load(classifier_path, map_location=self.device)
classifier_for_fid.load_state_dict(classifier_state["model"])
classifier_for_fid.eval()
return classifier_for_fid
def get_prediction(self, data, act, sample_num, uncond, use_ema=True, concat_hist=False):
"""
data: [batch_size, total_len, num_joints=17, 3]
act: [batch_size]
sample_num: how many samples to generate for one data entry
"""
traj = data[..., 1:, :].reshape(data.shape[0], data.shape[1], -1).to(self.device).to(self.dtype) # [b, t_total, 16x3]
# process x_0_history: [b*sample_num, t_pred, nc]
x_0_history = torch.repeat_interleave(traj[:,:-self.output_n,:], sample_num, dim=0)
total_sample_num = x_0_history.shape[0]
Y = self.model.sample(x_0_history, None, batch_size=total_sample_num, clip_denoised=False, uncond=uncond) # [b*sample_num, t_pred, nc]
if concat_hist:
Y = torch.cat((x_0_history, Y), dim=1)
Y = Y.contiguous()
return Y
@torch.no_grad()
def compute_stats(self):
"""
return: dic [stat_name, stat_val] NOTE: val.avg is standard
"""
self.model.eval()
def get_gt(data, input_n):
gt = data[..., 1:, :].reshape(data.shape[0], data.shape[1], -1)
return gt[:, input_n:, :]
# all quantitative results in paper
stats_func = {'APD': APD, 'APDE': APDE, 'ADE': ADE,'FDE': FDE, 'MMADE': MMADE, 'MMFDE': MMFDE, 'FID': None, 'CMD': None}
stats_names = list(stats_func.keys())
stats_meter = {x: AverageMeterTorch() for x in stats_names}
histogram_data = []
all_pred_activations = [] # for FID. We need to compute the activations of the predictions
all_gt_activations = [] # for FID. We need to compute the activations of the GT
all_pred_classes = []
all_gt_classes = []
all_obs_classes = []
counter = 0
t = time.time()
for i, (data, extra) in enumerate(self.eval_dataloader):
gt = get_gt(data, self.input_n).to(self.device).to(self.dtype) # [batch_size, t_pred, NC]
pred = self.get_prediction(data, extra['act'], sample_num=self.cfg.eval_sample_num, uncond=True, concat_hist=False).detach()
pred = rearrange(pred, '(b s) ... -> b s ...', b=gt.shape[0])
gt_multi = self.multimodal_traj[counter:counter+gt.shape[0]]
gt_multi = [t.to(self.device) for t in gt_multi]
gt_apd = self.mmapd[counter:counter+gt.shape[0]].to(self.device)
for stats in stats_names:
if stats not in ('APDE', 'FID', 'CMD'):
val = stats_func[stats](pred, gt, gt_multi)
stats_meter[stats].update(val)
# calculate APDE
apde = stats_func['APDE'](stats_meter['APD'].raw_val, gt_apd)
stats_meter['APDE'].update(apde)
# calculate CMD, FID
CMD_helper(pred, extra, histogram_data, all_obs_classes)
if self.cfg.dataset == 'h36m':
FID_helper(pred, gt, self.classifier_for_fid, all_pred_activations, all_gt_activations, all_pred_classes, all_gt_classes)
counter += data.shape[0]
print('-' * 80)
print('Num in multi_GT: ', gt_multi[0].shape[0])
for stats in stats_names:
str_stats = f'{counter-data.shape[0]:04d} {stats:<6}: ' + f'({stats_meter[stats].avg:.4f})'
print(str_stats)
# postprocess CMD, FID
cmd_val = CMD_pose(self.eval_dataset, histogram_data, all_obs_classes)
stats_meter['CMD'].direct_set_avg(cmd_val)
if self.cfg.dataset == 'h36m':
fid_val = FID_pose(all_gt_activations, all_pred_activations)
stats_meter['FID'].direct_set_avg(fid_val)
return stats_meter
def evaluation(self):
"""NOTE: can be only called once"""
stats_dic = self.compute_stats()
return {x: y.avg for x, y in stats_dic.items()}
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', default=None)
parser.add_argument('--test', action='store_true', default=False)
parser.add_argument('--load', action='store_true', default=False)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--gpu_index', type=int, default=0)
args = parser.parse_args()
"""setup"""
cfg = Config(args.cfg, test=args.test)
set_global_seed(args.seed)
dtype = torch.float32 if cfg.dtype == 'float32' else torch.float64
torch.set_default_dtype(dtype)
device = torch.device('cuda', index=args.gpu_index) if torch.cuda.is_available() else torch.device('cpu')
if torch.cuda.is_available():
torch.cuda.set_device(args.gpu_index)
"""parameter"""
t_his = cfg.t_his
t_pred = cfg.t_pred
node_n = cfg.node_n
"""data"""
if cfg.dataset == 'h36m':
dataset_cls = DatasetH36M
else:
dataset_cls = DatasetAMASS
action = 'all'
"""loss weight"""
loss_weights = generate_loss_weight(cfg) # [t_all/r_pred, NxC]
"""model"""
model = get_model(cfg).to(dtype).to(device)
diffuser = GaussianDiffusion(
model=model,
cfg=cfg,
future_motion_size=(t_pred, node_n), # [T_pred, N*C=num_nodes]
timesteps=cfg.diffuse_steps,
loss_type=cfg.loss_type,
objective=cfg.objective,
beta_schedule=cfg.beta_schedule,
history_weight=cfg.history_weight,
future_weight=cfg.future_weight,
st_loss_weight=loss_weights,
).to(dtype).to(device)
"""trainer"""
trainer = Trainer(
dataset=dataset_cls,
diffusion_model=diffuser,
train_batch_size=cfg.batch_size,
train_lr=cfg.train_lr,
weight_decay=cfg.weight_decay,
actions=action,
cfg=cfg,
)
start_epoch = 0
print(">>> model on:", device)
print(">>> total params: {:.2f}M".format(sum(p.numel() for p in model.parameters()) / 1000000.0))
# For testing only
if args.test:
to_load_path = os.path.join(cfg.model_path, cfg.model_id + '_mdl.pth')
data = torch.load(to_load_path, map_location=device)
trainer.model.load_state_dict(data['model'])
else:
# For continuous training
if args.load:
file_name = 'ckpt_' + cfg.id + '.pth.tar'
trainer.load(os.path.join(cfg.model_dir, file_name))
start_epoch = trainer.epoch
# Training
for epoch in range(start_epoch, cfg.train_epoch):
ret_log = np.array([epoch + 1])
head = np.array(['epoch'])
lr, epoch_loss, epoch_loss_info, dt = trainer.train()
print(">>> epoch: ", epoch)
ret_log = np.append(ret_log, [lr, dt, epoch_loss])
head = np.append(head, ['lr', 'dt', 't_l'])
for key, value in epoch_loss_info.items():
head = np.append(head, key)
ret_log = np.append(ret_log, value)
# update log file and save checkpoint
is_create = False
if not args.load:
if epoch == 0:
is_create = True
save_csv_log(cfg, head, ret_log, is_create, file_name=cfg.id + '_log')
# checkpoint, info saving
file_name = 'ckpt_' + cfg.id + '.pth.tar'
save_ckpt(cfg, trainer, file_name=file_name)
print('Compute final stats...')
stats = trainer.evaluation()
print(stats)
with open('%s/eval_stats.csv' % (cfg.result_dir), 'w') as csv_file:
writer = csv.DictWriter(csv_file, stats.keys())
writer.writeheader()
writer.writerow(stats)
print('Done.')
if __name__ == '__main__':
main()