This repository has been archived by the owner on Jun 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathrun.py
431 lines (338 loc) · 14.9 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import os
import sys
import folder_paths
import argparse
import numpy as np
import torch
import rembg
from PIL import Image, ImageOps, ImageSequence
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from einops import rearrange, repeat
from tqdm import tqdm
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
import datetime
comfy_path = os.path.dirname(folder_paths.__file__)
instant_mesh_path = f'{comfy_path}/custom_nodes/ComfyUI-InstantMesh'
sys.path.append(instant_mesh_path)
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
FOV_to_intrinsics,
get_zero123plus_input_cameras,
get_circular_camera_poses,
)
from src.utils.mesh_util import save_obj, save_obj_with_mtl
from src.utils.infer_util import remove_background, resize_foreground
from src.utils.infer_util import save_video
def get_render_cameras(batch_size=1, M=120, radius=4.0, elevation=20.0, is_flexicubes=False):
"""
Get the rendering camera parameters.
"""
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
if is_flexicubes:
cameras = torch.linalg.inv(c2ws)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
else:
extrinsics = c2ws.flatten(-2)
intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
return cameras
def render_frames(model, planes, render_cameras, render_size=512, chunk_size=1, is_flexicubes=False):
"""
Render frames from triplanes.
"""
frames = []
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
if is_flexicubes:
frame = model.forward_geometry(
planes,
render_cameras[:, i:i + chunk_size],
render_size=render_size,
)['img']
else:
frame = model.forward_synthesizer(
planes,
render_cameras[:, i:i + chunk_size],
render_size=render_size,
)['images_rgb']
frames.append(frame)
frames = torch.cat(frames, dim=1)[0] # we suppose batch size is always 1
return frames
import pkg_resources
from pathlib import Path
def load_InstantMeshModel(config_from_node):
original_directory = os.getcwd()
python_path = sys.executable
python_dir = os.path.dirname(python_path)
scripts_dir = os.path.join(python_dir, 'Scripts')
os.environ['PATH'] += os.pathsep + scripts_dir
os.chdir(instant_mesh_path)
try:
###############################################################################
# Stage 0: Configuration.
###############################################################################
config = OmegaConf.load(config_from_node)
config_name = os.path.basename(config_from_node).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
device = torch.device('cuda')
# load reconstruction model
print('Loading reconstruction model ...')
model = instantiate_from_config(model_config)
if os.path.exists(infer_config.model_path):
model_ckpt_path = infer_config.model_path
else:
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh",
filename=f"{config_name.replace('-', '_')}.ckpt", repo_type="model")
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
if IS_FLEXICUBES:
model.init_flexicubes_geometry(device, fovy=30.0)
model = model.eval()
finally:
os.chdir(original_directory)
return model,config_from_node
def run_InstantMesh(model, config_from_node, input_path_from_node, diffusion_steps=75, view=6, export_texmap=True,
store_video=False, rem_bg=True, output_path='outputs/', seed=42, scale=1.0, distance=4.5):
no_rembg = not rem_bg
original_directory = os.getcwd()
os.chdir(instant_mesh_path)
try:
#seed_everything(seed)
###############################################################################
# Stage 0: Configuration.
###############################################################################
config = OmegaConf.load(config_from_node)
config_name = os.path.basename(config_from_node).replace('.yaml', '')
infer_config = config.infer_config
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
device = torch.device('cuda')
# load diffusion model
print('Loading diffusion model ...')
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2",
custom_pipeline="zero123plus",
torch_dtype=torch.float16,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
# load custom white-background UNet
print('Loading custom white-background unet ...')
if os.path.exists(infer_config.unet_path):
unet_ckpt_path = infer_config.unet_path
else:
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin",
repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)
pipeline = pipeline.to(device)
# make output directories
image_path = os.path.join(output_path, config_name, 'images')
mesh_path = os.path.join(output_path, config_name, 'meshes')
video_path = os.path.join(output_path, config_name, 'videos')
os.makedirs(image_path, exist_ok=True)
os.makedirs(mesh_path, exist_ok=True)
os.makedirs(video_path, exist_ok=True)
# process input files
if os.path.isdir(input_path_from_node):
input_files = [
os.path.join(input_path_from_node, file)
for file in os.listdir(input_path_from_node)
if file.endswith('.png') or file.endswith('.jpg') or file.endswith('.webp')
]
else:
input_files = [input_path_from_node]
print(f'Total number of input images: {len(input_files)}')
###############################################################################
# Stage 1: Multiview generation.
###############################################################################
rembg_session = None if no_rembg else rembg.new_session()
outputs = []
for idx, image_file in enumerate(input_files):
name = os.path.basename(image_file).split('.')[0]
print(f'[{idx + 1}/{len(input_files)}] Imagining {name} ...')
# remove background optionally
input_image = Image.open(image_file)
if not no_rembg:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
# sampling
output_image = pipeline(
input_image,
num_inference_steps=diffusion_steps,
).images[0]
output_image.save(os.path.join(image_path, f'{name}.png'))
print(f"Image saved to {os.path.join(image_path, f'{name}.png')}")
preview_img = os.path.join(image_path, f'{name}.png')
images = np.asarray(output_image, dtype=np.float32) / 255.0
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640)
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
outputs.append({'name': name, 'images': images})
# delete pipeline to save memory
del pipeline
###############################################################################
# Stage 2: Reconstruction.
###############################################################################
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0 * scale).to(device)
chunk_size = 20 if IS_FLEXICUBES else 1
video_path_idx = None
for idx, sample in enumerate(outputs):
name = sample['name']
print(f'[{idx + 1}/{len(outputs)}] Creating {name} ...')
images = sample['images'].unsqueeze(0).to(device)
images = v2.functional.resize(images, 320, interpolation=3, antialias=True).clamp(0, 1)
if view == 4:
indices = torch.tensor([0, 2, 4, 5]).long().to(device)
images = images[:, indices]
input_cameras = input_cameras[:, indices]
with torch.no_grad():
# get triplane
planes = model.forward_planes(images, input_cameras)
# get mesh
mesh_path_idx = os.path.join(mesh_path, f'{name}.obj')
mesh_out = model.extract_mesh(
planes,
use_texture_map=export_texmap,
**infer_config,
)
if export_texmap:
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
save_obj_with_mtl(
vertices.data.cpu().numpy(),
uvs.data.cpu().numpy(),
faces.data.cpu().numpy(),
mesh_tex_idx.data.cpu().numpy(),
tex_map.permute(1, 2, 0).data.cpu().numpy(),
mesh_path_idx,
)
else:
vertices, faces, vertex_colors = mesh_out
save_obj(vertices, faces, vertex_colors, mesh_path_idx)
print(f"Mesh saved to {mesh_path_idx}")
# get video
if store_video:
video_path_idx = os.path.join(video_path, f'{name}.mp4')
render_size = infer_config.render_resolution
render_cameras = get_render_cameras(
batch_size=1,
M=120,
radius=distance,
elevation=20.0,
is_flexicubes=IS_FLEXICUBES,
).to(device)
frames = render_frames(
model,
planes,
render_cameras=render_cameras,
render_size=render_size,
chunk_size=chunk_size,
is_flexicubes=IS_FLEXICUBES,
)
save_video(
frames,
video_path_idx,
fps=30,
)
print(f"Video saved to {video_path_idx}")
finally:
os.chdir(original_directory)
return preview_img, mesh_path_idx, video_path_idx
class InstantMeshLoader:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"config_name": (["instant-mesh-base", "instant-mesh-large", "instant-nerf-base", "instant-nerf-large"],),
},
}
RETURN_TYPES = ("InstantMeshModel","InstantMeshConfig")
RETURN_NAMES = ("model","config")
FUNCTION = "run"
CATEGORY = "InstantMesh"
def run(self, config_name):
config_path = "configs/" + config_name + ".yaml"
model,config = load_InstantMeshModel(config_path)
return (model, config)
class InstantMeshRun:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("InstantMeshModel",),
"config": ("InstantMeshConfig",),
"images": ("IMAGE",),
"diffusion_steps": ("INT", {
"default": 75,
"min": 1,
"max": 100,
"step": 1,
"display": "number"
}),
"view": ("INT", {
"default": 6,
"min": 4,
"max": 6,
"step": 1,
"display": "number"
}),
"export_texmap": ([True, False],),
"save_video": ([True, False],),
"remove_bg": ([True, False],),
},
}
RETURN_TYPES = ("IMAGE", "STRING", "STRING")
RETURN_NAMES = ("images", "mesh_path", "video_path")
FUNCTION = "run"
CATEGORY = "InstantMesh"
def run(self, model, config, images, diffusion_steps, view, export_texmap, save_video, remove_bg):
img_full_path = None
for (batch_number, ii) in enumerate(images):
i = 255. * ii.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
now = datetime.datetime.now()
timestamp = now.strftime("%Y%m%d_%H%M%S")
img_file_name = f'InstantMesh_{timestamp}.png'
tmp_path = f'{instant_mesh_path}/tmp'
if not os.path.exists(tmp_path):
os.makedirs(tmp_path)
img_full_path = f'{tmp_path}/{img_file_name}'
img.save(img_full_path)
preview_img_path, mesh_path_idx, video_path_idx = run_InstantMesh(
model, config, img_full_path, diffusion_steps, view, export_texmap, save_video, remove_bg)
my_path = os.path.dirname(__file__)
preview_img_path = os.path.join(my_path, preview_img_path)
mesh_path_idx = os.path.join(my_path, mesh_path_idx)
if video_path_idx is not None:
video_path_idx = os.path.join(my_path, video_path_idx)
print(preview_img_path)
print(mesh_path_idx)
print(video_path_idx)
preview_img = Image.open(preview_img_path)
image = None
for i in ImageSequence.Iterator(preview_img):
i = ImageOps.exif_transpose(i)
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
return (image, mesh_path_idx, video_path_idx)
NODE_CLASS_MAPPINGS = {
"InstantMeshLoader": InstantMeshLoader,
"InstantMeshRun": InstantMeshRun
}
NODE_DISPLAY_NAME_MAPPINGS = {
"InstantMeshLoader": "InstantMeshLoader",
"InstantMeshRun": InstantMeshRun
}