This example contains two agents and two tasks:
-
ProfilerAgent: It is used to create/update the profile of the user
-
RecommenderAgent: It is used to recommend the title of the article to the user
-
GenerateUpdatePersonaTask: It is used to generate/update the profile of the user
-
RecommendNewsArticlesTask: It is used to recommend the title of the article to the user
-
Input Schema:
user_ppid
: User's unique identifierarticles_read
: Array of read articles Required fields: Both fields are mandatory
-
Tools:
get_user_from_ppid
: User data retrieval systemlist_user_docs
: User document listing systemcreate_user_doc
: User document creation system
-
Main Steps:
- User Data Retrieval
- Fetch user information by PPID
- Sort by recent activity
- Document Analysis
- Retrieve existing persona documents
- Extract current persona data
- Persona Generation
- Analyze demographics
- Evaluate psychographics
- Map content interests
- Assess sports preferences
- Document Creation
- Generate embedding instruction
- Create new persona document
- Store with proper formatting
- User Data Retrieval
Perfect for platforms requiring sophisticated user profiling and content personalization.
-
Input Schema:
user_ppid
: User's unique identifiermmr_strength
: MMR (Maximal Marginal Relevance) strength for content diversityagent_id
: Agent identifier for document search Required fields: All fields are mandatory
-
Tools:
get_user_from_ppid
: Retrieves user information from PPIDget_user_docs
: Fetches user documents and personasearch_agent_docs
: Searches and ranks agent documents using embedding similarity
-
Input Schema:
user_ppid
: The user's unique identifiermmr_strength
: MMR (Maximal Marginal Relevance) strength for content diversityagent_id
: Agent identifier for document search
-
Tools:
get_user_from_ppid
: Retrieves user information from PPIDget_user_docs
: Fetches user documents and personasearch_agent_docs
: Searches and ranks agent documents using embedding similarity
-
Main Steps:
- User Data Retrieval
- Fetch latest user information using PPID
- Retrieve most recent user documents
- Persona Analysis
- Extract user embeddings and persona
- Use embeddings for content similarity ranking
- Content Selection
- Search and rank documents using MMR
- Select top 50 articles for consideration
- Article Diversification
- Rank articles based on user persona
- Select top 5 articles with sport diversity
- Newsletter Generation
- Create personalized newsletter title
- Format final article selection
- User Data Retrieval
This workflow is ideal for personalized news recommendation systems requiring:
- Sport content diversification
- Persona-based content ranking
- Automated newsletter generation