-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path2D_FDTD_PML.m
336 lines (306 loc) · 10.3 KB
/
2D_FDTD_PML.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
%% convention
clear all;
close all;
clc;
%% preparation
epsilon0 = 8.8541878128E-12; % Vacuum permittivity
mu0 = 4*pi*1E-7; % Vacuum permeability
c = 1/sqrt(epsilon0*mu0); % Vacuum speed of light
eta0 = sqrt(mu0/epsilon0); % wave impedance
freq_0 = 1e8; % what frequency do we want to simulate
omega_0 = 2*pi*freq_0; % angular frequency
lambda = c/freq_0; % wavelength
N = 3000; % number of time steps for simulation
Dim = 256; % size of simulated square region in space
dx = lambda/30; % choose grid size according to page 390 of text book
dy = dx; % assume square grid
dt = 1/c/sqrt(1/dx^2+1/dy^2); % choose time step size according to page 395 of text book
% to save memory, we only store the data for the current and previous time step
Ez_x = zeros(2,Dim,Dim);
Ez_y = zeros(2,Dim,Dim);
Ez = zeros(2,Dim,Dim);
Hx = zeros(2,Dim,Dim);
Hy = zeros(2,Dim,Dim);
%% time domain source
t = (0:N-1)*dt;N*dt/2
tau_p = 3/omega_0;%N*dt/8; % omega_0*tau_p = 3 --> tau_p = 3/omega_0
Source1 = exp(-0.5*((t-N*dt/4)/tau_p).^2);
Source2 = -(t-tau_p*5)/tau_p .* exp(-0.5*((t-tau_p*5)/tau_p).^2);
Source3 = exp(-0.5*((t-N*dt/4)/tau_p).^2) .* sin(omega_0*t); %
Source4 = 1*(1-exp(-(t)/tau_p)).*sin(omega_0 * t); % single freq
% source position
src_x = floor(Dim/2);
src_y = floor(Dim/2);
figure(1);
plot(t,Source1,'linewidth',3,'DisplayName','Gaussian Pulse');hold on;
plot(t,Source2,'linewidth',3,'DisplayName','Neumann Pulse');hold on;
plot(t,Source3,'linewidth',3,'DisplayName','Modulated Gaussian Pulse');hold on;
plot(t,Source4,'linewidth',3,'DisplayName','Time Harmonic Sine with Taper');hold on;
legend;
xlabel('Time (s)');
ylabel('Magnitude');
% title('Gaussian');
set(gca,'fontsize',36);
set(gca,'linewidth',3);
set(gca, 'LooseInset', [0,0,0,0]);
% saveas(gca, 'pulses.png');
Source = Source2;
%% frequency domain
Fs = 1/dt; NFFT = 2048;
f = Fs*(0:(N/2))/NFFT;
Y = fft(Source1,NFFT);
P = abs(Y/N);
P1 = P(1:N/2+1);
P1(2:end-1) = 2*P1(2:end-1);
Y = fft(Source2,NFFT);
P = abs(Y/N);
P2 = P(1:N/2+1);
P2(2:end-1) = 2*P2(2:end-1);
Y = fft(Source3,NFFT);
P = abs(Y/N);
P3 = P(1:N/2+1);
P3(2:end-1) = 2*P3(2:end-1);
Y = fft(Source4,NFFT);
P = abs(Y/N);
P4 = P(1:N/2+1);
P4(2:end-1) = 2*P4(2:end-1);
figure(2)
plot(f,P1,'linewidth',3,'DisplayName','Gaussian Pulse');hold on;
plot(f,P2,'linewidth',3,'DisplayName','Neumann Pulse');hold on;
plot(f,P3,'linewidth',3,'DisplayName','Modulated Gaussian Pulse');hold on;
plot(f,P4,'linewidth',3,'DisplayName','Time Harmonic Sine with Taper');hold on;
ylim([0,1])
xlim([0,freq_0*2])
legend;
xlabel('frequency (Hz)')
ylabel('Magnitude')
set(gca,'fontsize',36);
set(gca,'linewidth',3);
set(gca, 'LooseInset', [0,0,0,0]);
% saveas(gca, 'pulseSpectrum.png');
%% geometry
sheet_left = floor(Dim*2/3);
sheet_right = floor(Dim*3/4);
slot_down = floor(Dim*52/100);
slot_up = floor(Dim*48/100);
dx*(slot_down-slot_up)
epsilon = epsilon0*ones(Dim,Dim); % permitivity
mu = mu0*ones(Dim,Dim); % permeability
sigma = zeros(Dim,Dim); % conductivity
sigma_x = zeros(Dim,Dim);
sigma_y = zeros(Dim,Dim);
% PML of length NPML at boundary grids
NPML = 64;
mPML = 2; % m = 2 or 3 is a good choice
R0 = 1e-12; % magnitude of reflection coefficient
sigma_max = -(mPML+1)/(2*eta0*NPML*dx)*log(R0); % equation on page of 416 textbook
for i=1:NPML
sigma_x(i,:) = sigma_max * ((NPML+2-i)/NPML )^mPML;
end
for i=1:NPML
sigma_y(:,i) = sigma_max * ((NPML+2-i)/NPML )^mPML;
end
for i=Dim-NPML+1:Dim
sigma_x(i,:) = sigma_max * ((1+i-Dim+NPML)/NPML )^mPML;
end
for i=Dim-NPML+1:Dim
sigma_y(:,i) = sigma_max * ((1+i-Dim+NPML)/NPML )^mPML;
end
figure(10);
[X,Y] = meshgrid((1:Dim)*dx,(1:Dim)*dy);
contourf(X,Y,sigma_x+sigma_y);
colorbar;
xlabel('Y (m)')
ylabel('X (m)')
set(gca,'fontsize',36);
%set(gca, 'LooseInset', [0,0,0,0]);
%saveas(gca, 'pml_visualization.png');
% conductor object information
sigma_x(1:slot_up,sheet_left:sheet_right)=1e12;
sigma_x(slot_down:Dim,sheet_left:sheet_right)=1e12;
sigma_y(1:slot_up,sheet_left:sheet_right)=1e12;
sigma_y(slot_down:Dim,sheet_left:sheet_right)=1e12;
beta_x = epsilon(2:Dim-1,2:Dim-1)/dt + sigma_x(2:Dim-1,2:Dim-1)/2;
beta_y = epsilon(2:Dim-1,2:Dim-1)/dt + sigma_y(2:Dim-1,2:Dim-1)/2;
alpha_x = epsilon(2:Dim-1,2:Dim-1)/dt - sigma_x(2:Dim-1,2:Dim-1)/2;
alpha_y = epsilon(2:Dim-1,2:Dim-1)/dt - sigma_y(2:Dim-1,2:Dim-1)/2;
% observing point
obsrv_x = floor(Dim*5/10);
obsrv_y = floor(Dim*9/10);
obsrv_data = zeros(1,N);
%% move data in matrices to GPU, if there is a GPU
try
gpuArray(1);
canUseGPU=true;
gpuDevice
catch
canUseGPU=false;
end
% canUseGPU=false;
% memory need in total: (Dim^2*(2*5+6)+N+2)*4/1e9
if canUseGPU
Ez_x=gpuArray(single(Ez_x));
Ez_y=gpuArray(single(Ez_y));
Ez=gpuArray(single(Ez));
Hx=gpuArray(single(Hx));
Hy=gpuArray(single(Hy));
beta_x=gpuArray(single(beta_x));
beta_y=gpuArray(single(beta_y));
alpha_x=gpuArray(single(alpha_x));
alpha_y=gpuArray(single(alpha_y));
% dx=gpuArray(single(dx));
% dy=gpuArray(single(dy));
% Source=gpuArray(single(Source));
epsilon=gpuArray(single(epsilon));
mu=gpuArray(single(mu));
whos Ez_x
whos Ez_y
whos Ez
whos Hx
whos Hy
whos beta_x
whos beta_y
whos alpha_x
whos alpha_y
% whos dx
% whos dy
whos epsilon
whos mu
% whos Source
end
%% 2D TM Polarized EM field FDTD calculation (page 397-398 of the textbook)
h3=figure(3);
h4=figure(4);
h5=figure(5);
tic;
for n = 2:N % index of time
Ez_x(2,2:Dim-1,2:Dim-1) = 1 ./ beta_x .* (alpha_x .* squeeze(Ez_x(2-1,2:Dim-1,2:Dim-1)) + 1/dx * squeeze(Hy(2-1,2:Dim-1,2:Dim-1)-Hy(2-1,1:Dim-2,2:Dim-1)));
Ez_y(2,2:Dim-1,2:Dim-1) = 1 ./ beta_y .* (alpha_y .* squeeze(Ez_y(2-1,2:Dim-1,2:Dim-1)) - 1/dy * squeeze(Hx(2-1,2:Dim-1,2:Dim-1)-Hx(2-1,2:Dim-1,1:Dim-2)));
Ez(2,2:Dim-1,2:Dim-1) = Ez_x(2,2:Dim-1,2:Dim-1) + Ez_y(2,2:Dim-1,2:Dim-1);
Ez(2,src_x,src_y) = Ez(2,src_x,src_y) - 1/beta_x(src_x,src_y) * Source(n-1);
Hx(2,2:Dim-1,2:Dim-1) = 1 ./ beta_y .* (alpha_y .* squeeze(Hx(2-1,2:Dim-1,2:Dim-1)) - epsilon(2:Dim-1,2:Dim-1)./(mu(2:Dim-1,2:Dim-1)*dy) .* squeeze(Ez(2,2:Dim-1,3:Dim) - Ez(2,2:Dim-1,2:Dim-1)));
Hy(2,2:Dim-1,2:Dim-1) = 1 ./ beta_x .* (alpha_x .* squeeze(Hy(2-1,2:Dim-1,2:Dim-1)) + epsilon(2:Dim-1,2:Dim-1)./(mu(2:Dim-1,2:Dim-1)*dx) .* squeeze(Ez(2,3:Dim,2:Dim-1) - Ez(2,2:Dim-1,2:Dim-1)));
% E_\parallel = 0
Ez(:,slot_up,sheet_left:sheet_right)=0;
Ez(:,slot_down,sheet_left:sheet_right)=0;
Ez(:,slot_down:end,sheet_left)=0;
Ez(:,slot_down:end,sheet_right)=0;
Ez(:,1:slot_up,sheet_left)=0;
Ez(:,1:slot_up,sheet_right)=0;
Ez_x(:,slot_up,sheet_left:sheet_right)=0;
Ez_x(:,slot_down,sheet_left:sheet_right)=0;
Ez_x(:,slot_down:end,sheet_left)=0;
Ez_x(:,slot_down:end,sheet_right)=0;
Ez_x(:,1:slot_up,sheet_left)=0;
Ez_x(:,1:slot_up,sheet_right)=0;
Ez_y(:,slot_up,sheet_left:sheet_right)=0;
Ez_y(:,slot_down,sheet_left:sheet_right)=0;
Ez_y(:,slot_down:end,sheet_left)=0;
Ez_y(:,slot_down:end,sheet_right)=0;
Ez_y(:,1:slot_up,sheet_left)=0;
Ez_y(:,1:slot_up,sheet_right)=0;
% H_\perp=0
Hx(:,slot_up,sheet_left:sheet_right)=0;
Hx(:,slot_down,sheet_left:sheet_right)=0;
Hy(:,1:slot_up,sheet_left)=0;
Hy(:,1:slot_up,sheet_right)=0;
Hy(:,slot_down:end,sheet_left)=0;
Hy(:,slot_down:end,sheet_right)=0;
Ez_x(1,:,:)=Ez_x(2,:,:);
Ez_y(1,:,:)=Ez_y(2,:,:);
Ez(1,:,:)=Ez(2,:,:);
Hx(1,:,:)=Hx(2,:,:);
Hy(1,:,:)=Hy(2,:,:);
obsrv_data(n) = Ez(2,obsrv_x,obsrv_y);
if mod(n,50)==0
range = max(max(squeeze(abs(Ez(2,:,:)))))/10;
figure(3)
imagesc((1:Dim)*dx,(1:Dim)*dy,abs(squeeze(Ez(2,:,:)))/range);%,'Interpolation','bilinear');
colormap summer
axis image
xlabel('Y (m)')
ylabel('X (m)')
title(['$\mathcal{E}_z$', ' at ', 'time = ',num2str(round(n*dt,9)),' s',],'interpreter','latex');
set(gca,'fontsize',36);
set(gca,'linewidth',3);
%set(gca, 'LooseInset', [0,0,0,0]);
drawnow;
% jFrame = get(h3,'JavaFrame');
% set(jFrame,'Maximized',1);
set(gcf,'Position',[0,0,1024,1024]);
pause(0.3);
saveas(gca, ['sim1step',num2str(n),'Ez','.png']);
%range = max(max(squeeze(abs(Hx(2,:,:)))));
figure(4)
imagesc((1:Dim)*dx,(1:Dim)*dy,eta0*abs(squeeze(Hx(2,:,:)))/range);
colormap summer
axis image
xlabel('Y (m)')
ylabel('X (m)')
title(['$\mathcal{H}_x$', ' at ', 'time = ',num2str(round(n*dt,9)),' s',],'interpreter','latex');
set(gca,'fontsize',36);
set(gca,'linewidth',3);
% jFrame = get(h4,'JavaFrame');
% set(jFrame,'Maximized',1);
set(gcf,'Position',[0,0,1024,1024]);
pause(0.3);
saveas(gca, ['sim1step',num2str(n),'Hx','.png']);
%set(gca, 'LooseInset', [0,0,0,0]);
%range = max(max(squeeze(abs(Hy(2,:,:)))));
figure(5)
imagesc((1:Dim)*dx,(1:Dim)*dy,eta0*abs(squeeze(Hy(2,:,:)))/range);
colormap summer
axis image
xlabel('Y (m)')
ylabel('X (m)')
title(['$\mathcal{H}_y$', ' at ', 'time = ',num2str(round(n*dt,8)),' s',],'interpreter','latex');
set(gca,'fontsize',36);
set(gca,'linewidth',3);
% jFrame = get(h5,'JavaFrame');
% set(jFrame,'Maximized',1);
set(gcf,'Position',[0,0,1024,1024]);
pause(0.3);
saveas(gca, ['sim1step',num2str(n),'Hy','.png']);
%set(gca, 'LooseInset', [0,0,0,0]);
end
end
toc;
%% move the data from GPU to CPU, if there is a GPU
if canUseGPU
Ez_x=gather(Ez_x);
Ez_y=gather(Ez_y);
Ez=gather(Ez);
Hx=gather(Hx);
Hy=gather(Hy);
beta_x=gather(beta_x);
beta_y=gather(beta_y);
alpha_x=gather(alpha_x);
alpha_y=gather(alpha_y);
dx=gather(dx);
dy=gather(dy);
Ez_y=gather(Ez_y);
epsilon=gather(epsilon);
mu=gather(mu);
Source=gather(Source);
end
%% further processing at observation point
figure(6)
plot(t,obsrv_data,'linewidth',3);
xlabel('Time (s)');
ylabel('Magnitude');
set(gca,'fontsize',36);
set(gca,'linewidth',3);
set(gca, 'LooseInset', [0,0,0,0]);
Fs = 1/dt; NFFT = 2048;
f = Fs*(0:(N/2))/N;
Y = fft(obsrv_data);
P = abs(Y/N);
P1 = P(1:N/2+1);
P1(2:end-1) = 2*P1(2:end-1);
figure(7)
plot(f,P1,'linewidth',3);
xlabel('frequency (Hz)')
ylabel('Magnitude')
set(gca,'fontsize',36);
set(gca,'linewidth',3);
set(gca, 'LooseInset', [0,0,0,0]);