-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_outputs.py
122 lines (108 loc) · 4.7 KB
/
get_outputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import torchvision.models as models
import numpy as np
from skimage import io
import os
import matplotlib.pyplot as plt
import json
import sys
from PIL import Image
VOC_DIRECTORY = 'train' # Directory ImageSet/Main
OUTPUT_DIRECTORY = 'goodfiles'
MODEL_DIRECTORY = 'goodfiles/bestresnetweights.pt'
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
class VOC2012VAL(Dataset):
def __init__(self, voc_directory, difficult=False, transform=False):
'''
voc_directory: Directory of VOC, e.g. 'VOCdevkit/VOC2012'
train_val: True for trainset, False for valset
difficult: True if including difficult sets
transform: Transformations
'''
self.train_val_directory = voc_directory + '/ImageSets/Main'
self.image_directory = voc_directory + '/JPEGImages'
self.difficult = difficult
self.transform = transform
files_in_directory = os.listdir(self.train_val_directory)
assert 'val.txt' in files_in_directory
self.val_files = [x for x in files_in_directory if x.endswith('_val.txt') and not x.startswith('._')]
self.val_files.sort()
num_classes = len(self.val_files)
self.val_onehot = {}
self.idx_to_class = {}
self.idx_to_file = {}
ctr = 0
vf = open(self.train_val_directory + '/val.txt', 'r')
file_idx = 0
for line in vf:
self.val_onehot[line.strip()] = [0] * num_classes
self.idx_to_file[file_idx] = line.strip()
file_idx += 1
for filename in self.val_files:
self.idx_to_class[ctr] = filename[:-10]
f = open(self.train_val_directory + '/' + filename, 'r')
for line in f:
fname, label = line.split()
if label == '0' and self.difficult:
self.val_onehot[fname][ctr] = 1
if label == '1':
self.val_onehot[fname][ctr] = 1
ctr += 1
removal = []
for filename in self.val_onehot:
if sum(self.val_onehot[filename]) == 0:
removal.append(filename)
for filename in removal:
del(self.val_onehot[filename])
def __len__(self):
return len(self.val_onehot)
def __getitem__(self, idx):
filename = self.image_directory + '/' + self.idx_to_file[idx] + '.jpg'
img = Image.open(filename)
if self.transform:
img = self.transform(img)
target = torch.tensor(self.val_onehot[self.idx_to_file[idx]])
return self.idx_to_file[idx], img, target.float()
def eval(model, device, test_loader):
model.eval()
test_loss = 0
outputs = {}
with torch.no_grad():
for idx, (filename, data, target) in enumerate(test_loader):
num_crop = data.shape[1]
input_size = data.shape[0]
data = data.view([-1,data.shape[-3],data.shape[-2],data.shape[-1]])
data, target = data.to(device), target.to(device)
output = model(data)
output = output.view(input_size, num_crop, -1)
output = output.mean(1)
output = torch.sigmoid(output)
for i in range(len(filename)):
output_target = []
output_pred = []
for j in range(len(target[i])):
output_target.append(target[i][j].tolist())
output_pred.append(output[i][j].tolist())
outputs[filename[i]] = {'True': output_target, 'Pred': output_pred}
return outputs
fivecrop_testtime = transforms.Compose([
transforms.Resize(280),
transforms.FiveCrop(224),
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
transforms.Lambda(lambda norms: torch.stack([transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])(norm) for norm in norms]))
])
VOCVal = VOC2012VAL(VOC_DIRECTORY, transform = fivecrop_testtime)
val_loader = DataLoader(VOCVal, batch_size=4,
shuffle=False, num_workers=0)
resnet = models.resnet18(pretrained=False)
num_ftrs = resnet.fc.in_features
resnet.fc = torch.nn.Linear(num_ftrs, 20)
resnet.load_state_dict(torch.load(MODEL_DIRECTORY), strict=False)
resnet.to(device)
outputs = eval(resnet, device, val_loader)
with open('{}/evaloutputs.json'.format(OUTPUT_DIRECTORY), 'w') as fp:
json.dump(outputs, fp)