-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRunSW.m
65 lines (46 loc) · 1.54 KB
/
RunSW.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
%% RunSW
% A script demonstrating use of SwendsenWangIsing to simulate the Ising
% model on a two-dimensional grid with period boundary conditions and
% nearest-neighbor interactions.
%
% Copyright (c) 2018 Jacob Zavatone-Veth, MIT License
%% Set parameters
% Add the utilities folder to the MATLAB path
addpath('utils');
% Grid size (NxN)
N = 25;
% Temperature range
T = [0.1:0.01:3.5, 3.6:0.1:10];
% Number of iterations
nIter = 4000;
% Interval at which to display updates
displayIter = 100;
% Number of iterations to ignore in computing statistics
nBurnin = 200;
% Build the interaction matrix
[ J ] = BuildPeriodicFourConnectedInteractionMatrix(N);
%% Simulate temperatures in serial
% Allocate containers
E_iter = zeros(nIter, length(T));
M_iter = zeros(nIter, length(T));
spin = zeros(N, N, length(T));
acorr = zeros(floor(N/2+1), length(T));
% Start a timer
timeAll = tic;
% Iterate over temperatures
for ind = 1:length(T)
% Print a status update to the console
fprintf('Working on temperature %d of %d: %f.\n', ind, length(T), T(ind));
% Run the simulation
[E_iter(:,ind), M_iter(:,ind), x] = SwendsenWangIsing( N^2, T(ind), J, nIter, displayIter );
% Reshape the spin state for output
spin(:,:,ind) = reshape(x, N, N);
% Compute autocorrelation
[ acorr(:,ind) ] = Compute2dPeriodicIsingAutocorrelation( spin(:,:,ind), N );
end
% Get the elapsed time
elapsed = toc(timeAll);
% Print a status update
fprintf('\n\nSimulated %d temperatures in %f seconds.\n\n', length(T), elapsed);
%% Plot the results
MakeDemoPlots;