-
Notifications
You must be signed in to change notification settings - Fork 0
/
remove_lines.py
336 lines (233 loc) · 12 KB
/
remove_lines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
__author__ = 'kwebb'
import numpy as np
import os
from scipy.optimize import curve_fit
import glob
from astropy.io import fits
import ppxf_util as util
from matplotlib import pyplot as plt
from scipy import interpolate
def fit_emission_spectra(bin_sci, ppxf_bestfit, em_bin_sci, plot=False):
"""
"""
for j in range(len(glob.glob(bin_sci.format('*')))):
if not os.path.exists(em_bin_sci.format(j)):
abs_fit, ems_fit = fit_spectra(bin_sci.format(j), ppxf_bestfit.format(j), plot)
ems_hdu = fits.PrimaryHDU()
ems_hdu.data = ems_fit
ems_hdu.header = fits.getheader(bin_sci.format(j), 0)
ems_hdu.writeto(em_bin_sci.format(j))
def fit_absorp_spectra(bin_sci, ppxf_bestfit, abs_bin_sci, plot=False):
"""
"""
for j in range(len(glob.glob(bin_sci.format('*')))):
if not os.path.exists(abs_bin_sci.format(j)):
if plot:
print('>>>>> Removing emission lines from spectra {}'.format(j))
abs_fit, ems_fit = fit_spectra(bin_sci.format(j), ppxf_bestfit.format(j), plot)
abs_hdu = fits.PrimaryHDU()
abs_hdu.data = abs_fit
abs_hdu.header = fits.getheader(bin_sci.format(j), 0)
abs_hdu.writeto(abs_bin_sci.format(j))
def fit_spectra(bin_sci_j, ppxf_bestfit_j, plot=False):
"""
"""
with fits.open(bin_sci_j) as hdu:
odata = hdu[0].data
ohdr = hdu[0].header
bestfit = fits.getdata(ppxf_bestfit_j)
lamRange = ohdr['CRVAL1'] + np.array([1. - ohdr['CRPIX1'], ohdr['NAXIS1'] - ohdr['CRPIX1']]) * ohdr['CD1_1']
x = np.linspace(lamRange[0], lamRange[1], ohdr['NAXIS1'])
# Log bin the spectra to match the best fit absorption template
galaxy, logLam1, velscale = util.log_rebin(lamRange, odata)
log_bins = np.exp(logLam1)
emlns, lnames, lwave = util.emission_lines(logLam1, lamRange, 2.3)
# Hgamma 4340.47, Hbeta 4861.33, OIII [4958.92, 5006.84]
# lwave = [4340.47, 4861.33, 4958.92, 5006.84]
# find the index of the emission lines
iHg = (np.abs(log_bins - lwave[0])).argmin()
iHb = (np.abs(log_bins - lwave[1])).argmin()
iOIII = (np.abs(log_bins - lwave[2])).argmin()
iOIIIb = (np.abs(log_bins - (lwave[2] - 47.92))).argmin()
# There are BOTH absorption and emission features about the wavelength of Hgamma and Hbeta, so we need
# to use a specialized fitting function (convolved Guassian and Lorentzian -> pVoight) to remove the
# emission lines
popt_Hg, pcov_Hg = fit_ems_pvoightcont(log_bins, galaxy, x, odata, iHg, bestfit)
popt_Hb, pcov_Hb = fit_ems_pvoightcont(log_bins, galaxy, x, odata, iHb, bestfit)
# There are only emission features about the OIII doublet so we only fit the emission line with a Gaussian
popt_OIII, pcov_OIII = fit_ems_lincont(x, odata, iOIII, bestfit, x[954], [x[952], x[956]])
popt_OIIIb, pcov_OIIIb = fit_ems_lincont(x, odata, iOIIIb, bestfit)
em_fit = gauss_lorentz(x, popt_Hg[0], popt_Hg[1], popt_Hg[2], popt_Hg[3], popt_Hg[4], popt_Hg[5]) + \
gauss_lorentz(x, popt_Hb[0], popt_Hb[1], popt_Hb[2], popt_Hb[3], popt_Hb[4], popt_Hb[5]) + \
gauss_lorentz(x, popt_OIII[0], popt_OIII[1], popt_OIII[2], popt_OIII[3], popt_OIII[4], popt_OIII[5]) + \
gauss_lorentz(x, popt_OIIIb[0], popt_OIIIb[1], popt_OIIIb[2], popt_OIIIb[3], popt_OIIIb[4], popt_OIIIb[5])
abs_fit = odata - em_fit
if plot:
plt.plot(x, odata, '-k', label="spectra")
# plt.plot(x, bestfit, '--r', label="bestfit absorption line")
plt.plot(x, abs_fit, '-b', label="absorption spectra - gauss")
plt.legend()
plt.show()
return abs_fit, em_fit
def fit_ems_pvoightcont(log_bins, galaxy, lin_bins, odata, iline, bestfit):
"""
"""
w = 50 # half width of the fitting region
cutout_log = galaxy[iline - w:iline + w]
cutout_lin = odata[iline - w:iline + w]
# Find the peak within this cutout, emission line may be shifted from where it is expected to be
ipk_log = np.where(galaxy == np.max(cutout_log))[0][0] # This is the index of the real emission line
x_log = log_bins[ipk_log - w:ipk_log + w]
cutout_pk_log = galaxy[ipk_log - w:ipk_log + w]
ipk_lin = np.where(odata == np.max(cutout_lin))[0][0]
x_lin = lin_bins[ipk_lin - w:ipk_lin + w]
cutout_pk_lin = odata[ipk_lin - w:ipk_lin + w]
x0_lin = x_lin[np.argmax(cutout_pk_lin)]
# To fit the spectra to a pVoight (absorption) and a Guassian (emission) we first want to determine what the
# optimal parameters for the absorption is by using the best fit absorption template
bfcutout = bestfit[ipk_log - w:ipk_log + w]
b_bf = np.mean([np.mean(bfcutout[0:int(0.25 * len(bfcutout))]), np.mean(bfcutout[int(0.75 * len(bfcutout)):-1])])
a_bf = b_bf - np.min(bfcutout)
x0_bf = x_log[np.argmin(bfcutout)]
# Fit the absorption spectra to a pVoight function (weighted sum of a Gaussian and Lorentzian function)
poptbf, pcovbf = curve_fit(pvoight, x_log, bfcutout, p0=[a_bf, 5., x0_bf, b_bf, 0.8])
# determine the fit in linear space
bf_voi = pvoight(x_lin, poptbf[0], poptbf[1], x0_lin, poptbf[3], poptbf[4])
# plt.plot(x_log, bfcutout, '--b', label="bestfit absorption line")
# plt.plot(x_lin, cutout_lin, '-r', label="spectra")
#plt.plot(x_lin, bf_voi, '-g', label="fit of bestfit spectra")
#plt.legend()
#plt.show()
# Now fit the cutout region to a Gaussian function and and the bf_voi pVoight function
b_em = poptbf[3]
a_em = np.max(cutout_pk_lin) - b_em
popt, pcov = curve_fit(fit_emline_over_absline(bf_voi), x_lin, cutout_pk_lin,
p0=[a_em, 2., x0_lin, a_em, 2., x0_lin])
em_fit = gauss_lorentz(x_lin, popt[0], popt[1], popt[2], popt[3], popt[4], popt[5])
abs_fit = np.subtract(cutout_pk_lin, em_fit)
#plt.plot(x_log, bfcutout, '--b', label="bestfit absorption line")
#plt.plot(x_lin, cutout_pk_lin, '-k', label="spectra")
#plt.plot(x_lin, abs_fit, '-r', label="absorption spectra")
#plt.legend()
#plt.ylim(3,10)
#plt.show()
return popt, pcov
def fit_ems_lincont(lin_bins, odata, iline, bestfit, bad_pt=0, mask_region=[]):
"""
"""
w = 40 # Half width of fitting region
cutout = odata[iline - w:iline + w]
# Find the peak within this cutout, emission line may be shifted from where it is expected to be
iline2 = np.where(odata == np.max(cutout))[0][0] # This is the index of the real emission line
wline2 = lin_bins[iline2]
x = lin_bins[iline2 - w:iline2 + w]
cutout2 = odata[iline2 - w:iline2 + w]
b_init = np.mean([np.mean(cutout2[0:int(0.25 * len(cutout2))]), np.mean(cutout2[int(0.75 * len(cutout2)):-1])])
a_init = np.max(cutout2) - b_init
bfcutout = bestfit[iline2 - w:iline2 + w]
poptbf, pcovbf = curve_fit(linear, x, bfcutout, p0=[-0.1, b_init])
bf_lin = linear(x, poptbf[0], poptbf[1])
if int(bad_pt) in range(int(x[0]), int(x[-1])): # apply mask to region with weird bump that bugs fitting method
x_ma = np.ma.masked_inside(x, mask_region[0], mask_region[1])
# Now get data only for points that are not masked
x_ma_data = x[~x_ma.mask]
cutout2_ma_data = cutout2[~x_ma.mask]
bf_lin_ma_data = bf_lin[~x_ma.mask]
popt, pcov = curve_fit(fit_emline_over_cont(bf_lin_ma_data), x_ma_data, cutout2_ma_data,
p0=[a_init, 2., wline2, a_init / 2., 2., wline2])
else:
popt, pcov = curve_fit(fit_emline_over_cont(bf_lin), x, cutout2,
p0=[a_init, 2., wline2, a_init / 2., 2., wline2])
em_fit = gauss_lorentz(x, popt[0], popt[1], popt[2], popt[3], popt[4], popt[5])
abs_fit = np.subtract(cutout2, em_fit)
# plt.plot(x, cutout2, '-k', label="spectra")
# plt.plot(x, abs_fit, '-r', label="absorption spectra")
#plt.ylim(5,10)
#plt.show()
return popt, pcov
def em_chop(lin_bins, odata, iline, log_bins, bestfit):
"""
"""
w = 40 # Half width of fitting region
line_region = odata[iline - w:iline + w]
# Find the peak within this cutout, emission line may be shifted from where it is expected to be
iline2 = np.where(odata == np.max(line_region))[0][0] # This is the index of the real emission line
wline2 = lin_bins[iline2]
x_cutout = lin_bins[iline2 - w:iline2 + w]
cutout = odata[iline2 - w:iline2 + w]
f = interpolate.interp1d(log_bins, bestfit)
interp = np.empty_like(cutout)
for idx, x in enumerate(x_cutout):
interp[idx] = f(x)
i_st = (np.abs(lin_bins - x_cutout[0])).argmin()
i_end = (np.abs(lin_bins - x_cutout[-1])).argmin()
abs_fit = odata
abs_fit[i_st:i_end] = interp[:-1]
return abs_fit
def pvoight(x, a, w, x0, b, frac):
return (1 - frac) * gaussian(x, a, w, x0, b) + frac * lorentz(x, a, w, x0, b)
def lorentz(x, a, w, x0, b):
return a / (1 + ((x - x0) / (w / 2)) ** 2) + b
def gaussian(x, a, w, x0, b):
return a * np.exp(-(x - x0) ** 2 / (2 * w ** 2)) + b
def linear(x, m, b):
return m * x + b
def fit_emline_over_cont(bf_lin):
def emline_over_cont(x, a, w, x0, a2, w2, x02):
return gauss_lorentz(x, a, w, x0, a2, w2, x02) + bf_lin
return emline_over_cont
def fit_emline_over_absline(bf_voi):
def emline_over_absline(x, a, w, x0, a2, w2, x02):
return gauss_lorentz(x, a, w, x0, a2, w2, x02) + bf_voi
return emline_over_absline
def gauss_lorentz(x, a, w, x0, a2, w2, x02):
return gaussian(x, a, w, x0, 0.) + lorentz(x, a2, w2, x02, 0.)
def clean_spec(bin_spec, feat_spec, bad_region):
"""
Replace noisy region with continuum, I have found that this in no way improves our analysis of the kinematics
"""
# use splot to determine bad region, the '$' will cahnge scale from wavelength to pixels
# Use splot to remove the continuum from the spectra - 't' then '-' then 'q' then 'i' and choose output file name
# To get the continuum (which I will use to fill in the bad region) subtract the continuum removed spectra
# from the original spectra. i.e. (spectra) - (spectra - continuum) = continuum
bin_spec_orig = bin_spec.split('bin')[0] + 'orig_bin' + bin_spec.split('bin')[1] # save original under new name
assert os.path.exists(
feat_spec), 'Features fits file has not yet been created, refer to instructions in clean_spec_30'
if os.path.isfile(bin_spec_orig):
print('Spectra {} has already been cleaned'.format(bin_spec))
return
with fits.open(bin_spec) as spec_hdu:
spec_data = spec_hdu[0].data
spec_hdr = spec_hdu[0].header
with fits.open(bin_spec_features) as feat_hdu:
feat_data = feat_hdu[0].data
continuum_data = np.subtract(spec_data, feat_data)
# now replace bad region in spectra with that of the values of the continuum
clean_data = spec_data
clean_data[bad_region[0]:bad_region[1]] = continuum_data[bad_region[0]:bad_region[1]]
# write into a new fits image the clean data
clean_hdu = fits.PrimaryHDU()
clean_hdu.data = clean_data
clean_hdu.header = spec_hdr
clean_hdu.writeto(bin_spec, clobber=True)
orig_hdu = fits.PrimaryHDU()
orig_hdu.data = spec_data
orig_hdu.header = spec_hdr
orig_hdu.writeto(bin_spec_orig, clobber=True)
def subtract_besftfit(bin_sci, ppxf_bestfit, em_bin_sci):
"""
"""
for j in range(len(glob.glob(bin_sci.format('*')))):
if not os.path.exists(em_bin_sci.format(j)):
with fits.open(bin_sci.format(j)) as hdu:
odata = hdu[0].data
ohdr = hdu[0].header
bestfit = fits.getdata(ppxf_bestfit.format(j))
lamRange = ohdr['CRVAL1'] + np.array([1. - ohdr['CRPIX1'], ohdr['NAXIS1'] - ohdr['CRPIX1']]) * ohdr['CD1_1']
# Log bin the spectra to match the best fit absorption template
galaxy, logLam, velscale = util.log_rebin(lamRange, odata)
ems_fit = np.subtract(galaxy, bestfit)
ems_hdu = fits.PrimaryHDU()
ems_hdu.data = ems_fit
ems_hdu.header = fits.getheader(bin_sci.format(j), 0)
ems_hdu.writeto(em_bin_sci.format(j))