Skip to content

Commit f733d2f

Browse files
tengqmk82cn
authored andcommitted
Remove docs related to in-tree support to GPU (kubernetes#8294)
* Remove docs related to in-tree support to GPU The in-tree support to GPU is completely removed in release 1.11. This PR removes the related docs in release-1.11 branch. xref: kubernetes/kubernetes#61498 * Update content updated by PR to Hugo syntax Signed-off-by: Misty Stanley-Jones <mistyhacks@google.com>
1 parent 2438f6d commit f733d2f

File tree

3 files changed

+4
-80
lines changed

3 files changed

+4
-80
lines changed

content/en/docs/concepts/configuration/manage-compute-resources-container.md

Lines changed: 4 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -143,9 +143,7 @@ When using Docker:
143143
multiplied by 100. The resulting value is the total amount of CPU time that a container can use
144144
every 100ms. A container cannot use more than its share of CPU time during this interval.
145145

146-
{{< note >}}
147-
**Note**: The default quota period is 100ms. The minimum resolution of CPU quota is 1ms.
148-
{{< /note >}}
146+
{{< note >}}**Note**: The default quota period is 100ms. The minimum resolution of CPU quota is 1ms.{{ {{</ note >}}}
149147

150148
- The `spec.containers[].resources.limits.memory` is converted to an integer, and
151149
used as the value of the
@@ -208,12 +206,10 @@ $ kubectl describe nodes e2e-test-minion-group-4lw4
208206
Name: e2e-test-minion-group-4lw4
209207
[ ... lines removed for clarity ...]
210208
Capacity:
211-
alpha.kubernetes.io/nvidia-gpu: 0
212209
cpu: 2
213210
memory: 7679792Ki
214211
pods: 110
215212
Allocatable:
216-
alpha.kubernetes.io/nvidia-gpu: 0
217213
cpu: 1800m
218214
memory: 7474992Ki
219215
pods: 110
@@ -299,10 +295,10 @@ Container in the Pod was terminated and restarted five times.
299295
You can call `kubectl get pod` with the `-o go-template=...` option to fetch the status
300296
of previously terminated Containers:
301297

302-
```shell
298+
```shell{% raw %}
303299
[13:59:01] $ kubectl get pod -o go-template='{{range.status.containerStatuses}}{{"Container Name: "}}{{.name}}{{"\r\nLastState: "}}{{.lastState}}{{end}}' simmemleak-hra99
304300
Container Name: simmemleak
305-
LastState: map[terminated:map[exitCode:137 reason:OOM Killed startedAt:2015-07-07T20:58:43Z finishedAt:2015-07-07T20:58:43Z containerID:docker://0e4095bba1feccdfe7ef9fb6ebffe972b4b14285d5acdec6f0d3ae8a22fad8b2]]
301+
LastState: map[terminated:map[exitCode:137 reason:OOM Killed startedAt:2015-07-07T20:58:43Z finishedAt:2015-07-07T20:58:43Z containerID:docker://0e4095bba1feccdfe7ef9fb6ebffe972b4b14285d5acdec6f0d3ae8a22fad8b2]]{% endraw %}
306302
```
307303

308304
You can see that the Container was terminated because of `reason:OOM Killed`,
@@ -544,6 +540,4 @@ consistency across providers and platforms.
544540

545541
* [ResourceRequirements](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#resourcerequirements-v1-core)
546542

547-
{{% /capture %}}
548-
549-
543+
{{% /capture %}}

content/en/docs/tasks/administer-cluster/extended-resource-node.md

Lines changed: 0 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -83,7 +83,6 @@ The output shows that the Node has a capacity of 4 dongles:
8383

8484
```
8585
"capacity": {
86-
"alpha.kubernetes.io/nvidia-gpu": "0",
8786
"cpu": "2",
8887
"memory": "2049008Ki",
8988
"example.com/dongle": "4",
@@ -99,7 +98,6 @@ Once again, the output shows the dongle resource:
9998

10099
```yaml
101100
Capacity:
102-
alpha.kubernetes.io/nvidia-gpu: 0
103101
cpu: 2
104102
memory: 2049008Ki
105103
example.com/dongle: 4
@@ -205,6 +203,3 @@ kubectl describe node <your-node-name> | grep dongle
205203

206204

207205
{{% /capture %}}
208-
209-
210-

content/en/docs/tasks/manage-gpus/scheduling-gpus.md

Lines changed: 0 additions & 65 deletions
Original file line numberDiff line numberDiff line change
@@ -143,68 +143,3 @@ spec:
143143
144144
This will ensure that the pod will be scheduled to a node that has the GPU type
145145
you specified.
146-
147-
## v1.6 and v1.7
148-
To enable GPU support in 1.6 and 1.7, a special **alpha** feature gate
149-
`Accelerators` has to be set to true across the system:
150-
`--feature-gates="Accelerators=true"`. It also requires using the Docker
151-
Engine as the container runtime.
152-
153-
Further, the Kubernetes nodes have to be pre-installed with NVIDIA drivers.
154-
Kubelet will not detect NVIDIA GPUs otherwise.
155-
156-
When you start Kubernetes components after all the above conditions are true,
157-
Kubernetes will expose `alpha.kubernetes.io/nvidia-gpu` as a schedulable
158-
resource.
159-
160-
You can consume these GPUs from your containers by requesting
161-
`alpha.kubernetes.io/nvidia-gpu` just like you request `cpu` or `memory`.
162-
However, there are some limitations in how you specify the resource requirements
163-
when using GPUs:
164-
- GPUs are only supposed to be specified in the `limits` section, which means:
165-
* You can specify GPU `limits` without specifying `requests` because
166-
Kubernetes will use the limit as the request value by default.
167-
* You can specify GPU in both `limits` and `requests` but these two values
168-
must be equal.
169-
* You cannot specify GPU `requests` without specifying `limits`.
170-
- Containers (and pods) do not share GPUs. There's no overcommitting of GPUs.
171-
- Each container can request one or more GPUs. It is not possible to request a
172-
fraction of a GPU.
173-
174-
When using `alpha.kubernetes.io/nvidia-gpu` as the resource, you also have to
175-
mount host directories containing NVIDIA libraries (libcuda.so, libnvidia.so
176-
etc.) to the container.
177-
178-
Here's an example:
179-
180-
```yaml
181-
apiVersion: v1
182-
kind: Pod
183-
metadata:
184-
name: cuda-vector-add
185-
spec:
186-
restartPolicy: OnFailure
187-
containers:
188-
- name: cuda-vector-add
189-
# https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
190-
image: "k8s.gcr.io/cuda-vector-add:v0.1"
191-
resources:
192-
limits:
193-
alpha.kubernetes.io/nvidia-gpu: 1 # requesting 1 GPU
194-
volumeMounts:
195-
- name: "nvidia-libraries"
196-
mountPath: "/usr/local/nvidia/lib64"
197-
volumes:
198-
- name: "nvidia-libraries"
199-
hostPath:
200-
path: "/usr/lib/nvidia-375"
201-
```
202-
203-
The `Accelerators` feature gate and `alpha.kubernetes.io/nvidia-gpu` resource
204-
works on 1.8 and 1.9 as well. It will be deprecated in 1.10 and removed in
205-
1.11.
206-
207-
## Future
208-
- Support for hardware accelerators in Kubernetes is still in alpha.
209-
- Better APIs will be introduced to provision and consume accelerators in a scalable manner.
210-
- Kubernetes will automatically ensure that applications consuming GPUs get the best possible performance.

0 commit comments

Comments
 (0)