-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval.py
187 lines (152 loc) · 7.67 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import math
import torch
import os
import argparse
import numpy as np
import itertools
from tqdm import tqdm
from utils import load_model, move_to
from utils.data_utils import save_dataset
from torch.utils.data import DataLoader
import time
from datetime import timedelta
from utils.functions import parse_softmax_temperature
import tsplib95
from utils.problem_augment import augment
# from nce.solver import solve_mTSP
mp = torch.multiprocessing.get_context('spawn')
import random
torch.manual_seed(1234)
np.random.seed(1234)
random.seed(1234)
def eval_dataset_mp(args):
(model, dataset_path, width, softmax_temp, opts, i, num_processes) = args
# model, _ = load_model(opts.model)
val_size = opts.val_size // num_processes
dataset = model.problem.make_dataset(filename=dataset_path, num_samples=val_size, offset=opts.offset + val_size * i)
device = torch.device("cuda:{}".format(i))
return _eval_dataset(model, dataset, width, softmax_temp, opts, device)
def eval_dataset(model, dataset_path, width, softmax_temp, opts, offset):
# Even with multiprocessing, we load the model here since it contains the name where to write results
use_cuda = torch.cuda.is_available() and not opts.no_cuda
if opts.multiprocessing:
assert use_cuda, "Can only do multiprocessing with cuda"
num_processes = torch.cuda.device_count()
assert opts.val_size % num_processes == 0
with mp.Pool(num_processes) as pool:
results = list(itertools.chain.from_iterable(pool.map(
eval_dataset_mp,
[(model, dataset_path, width, softmax_temp, opts, i, num_processes) for i in range(num_processes)]
)))
else:
device = torch.device("cuda:0" if use_cuda else "cpu")
dataset = model.problem.make_dataset(filename=dataset_path, num_samples=opts.sample_size, offset=offset)
results, max_val, start_time = _eval_dataset(model, dataset, width, softmax_temp, opts, device)
# This is parallelism, even if we use multiprocessing (we report as if we did not use multiprocessing, e.g. 1 GPU)
parallelism = opts.eval_batch_size
# parallelism = num_processes
costs, tours, durations = zip(*results) # Not really costs since they should be negative
return costs, durations, max_val
def _eval_dataset(model, dataset, width, softmax_temp, opts, device):
model.to(device)
model.eval()
model.set_decode_type(
"greedy" if opts.decode_strategy in ('greedy') else "sampling",
temp=softmax_temp)
dataloader = DataLoader(dataset, batch_size=opts.eval_batch_size)
results = []
if opts.N_aug > 1:
aug = opts.N_aug
else:
aug = 1
for batch in tqdm(dataloader, disable=opts.no_progress_bar):
if opts.problem == 'mtsp':
max_val = batch.max()
if max_val > 1:
batch = batch/max_val
else:
max_val = None
# For TSPLIB
if aug > 1:
batch = augment(batch, aug)
# distance_matrix = torch.cdist(batch, batch, p=2)
batch = move_to(batch, device)
start = time.time()
with torch.no_grad():
if opts.decode_strategy in ('sample', 'greedy'):
if opts.decode_strategy == 'greedy' and opts.N_aug == 8:
assert width == 0, "Do not set width when using greedy"
assert opts.eval_batch_size <= opts.max_calc_batch_size, \
"eval_batch_size should be smaller than calc batch size"
batch_rep = 1
iter_rep = 1
else:
batch_rep = width
iter_rep = 1
sequences, costs = model.sample_many(batch, batch_rep=batch_rep, iter_rep=iter_rep, agent_num=opts.agent_num, aug=aug)
duration = time.time() - start
results.append((costs.cpu().numpy(), sequences.cpu().numpy(),duration))
return results, max_val, start
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--problem', default="mtsp", type=str, help="problem type")
parser.add_argument("datasets", nargs='+', help="Filename of the dataset(s) to evaluate")
parser.add_argument("-f", action='store_true', help="Set true to overwrite")
parser.add_argument("-o", default=None, help="Name of the results file to write")
parser.add_argument('--val_size', type=int, default=100,
help='Number of instances used for reporting validation performance')
parser.add_argument('--sample_size', type=int, default=100,
help='Number of instances used for reporting validation performance')
parser.add_argument('--offset', type=int, default=0,
help='Offset where to start in dataset (default 0)')
parser.add_argument('--eval_batch_size', type=int, default=1024,
help="Batch size to use during (baseline) evaluation")
parser.add_argument('--decode_type', type=str, default='greedy',
help='Decode type, greedy or sampling')
parser.add_argument('--width', type=int, nargs='+', default=[0],
help='Sizes of beam to use for beam search (or number of samples for sampling), '
'0 to disable (default), -1 for infinite')
parser.add_argument('--decode_strategy', type=str, default='greedy',
help='Sampling (sample) or Greedy (greedy)')
parser.add_argument('--softmax_temperature', type=parse_softmax_temperature, default=1,
help="Softmax temperature (sampling or bs)")
parser.add_argument('--model', type=str)
parser.add_argument('--no_cuda', action='store_true', help='Disable CUDA')
parser.add_argument('--no_progress_bar', action='store_true', help='Disable progress bar')
parser.add_argument('--multiprocessing', default=False,
help='Use multiprocessing to parallelize over multiple GPUs')
parser.add_argument('--agent_num', default=3, type=int, help="decide the number of agent")
parser.add_argument('--ft',default="Y", type=str)
parser.add_argument('--is_serial', default='True', type=str, help="whether to use serial augmentation of instance")
parser.add_argument('--N_aug', default=8, type=int, help="how any augmentation of instance")
parser.add_argument('--max_calc_batch_size', default=100000, type=int, help="max batch size for calculation")
opts = parser.parse_args()
assert opts.o is None or (len(opts.datasets) == 1 and len(opts.width) <= 1), \
"Cannot specify result filename with more than one dataset or more than one width"
is_serial = opts.is_serial.lower() == 'true'
if is_serial:
num_iter = opts.val_size
opts.sample_size = 1
else:
num_iter = 1
opts.sample_size = opts.val_size
widths = opts.width if opts.width is not None else [0]
Performance = []
Time = []
agent_num = opts.agent_num
model, _ = load_model(opts.model, agent_num=agent_num, ft=opts.ft)
model.agent_num = opts.agent_num
for width in widths:
for dataset_path in opts.datasets:
for i in range(num_iter):
cost, duration, max_val = eval_dataset(model, dataset_path, width, opts.softmax_temperature, opts, offset=i)
Performance.append(cost)
Time.append(duration)
Performance = np.array(Performance)
# For TSPLIB
if max_val is not None:
if max_val > 1:
Performance = Performance * max_val
Time = np.array(Time)
print("Average-Performance : ", np.mean(Performance))
print("Average-Time : ", np.mean(Time))