-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
80 lines (67 loc) · 2.46 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# main.py
from transformers import BertTokenizer, BertForSequenceClassification
from datasets import load_dataset
from training_args import TrainingArguments
from trainer import Trainer
from data_collator import DataCollator
from callbacks import LoggingCallback, EarlyStoppingCallback
def main():
# 加载预训练的分词器和模型
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
# 加载数据集
dataset = load_dataset('glue', 'mrpc')
train_dataset = dataset['train']
eval_dataset = dataset['validation']
# 对数据集进行预处理
def preprocess_function(examples):
return tokenizer(
examples['sentence1'],
examples['sentence2'],
truncation=True,
max_length=128,
padding='max_length' # 在预处理时进行填充
)
# 使用 `map` 方法对数据集进行批量分词
train_dataset = train_dataset.map(preprocess_function, batched=True)
eval_dataset = eval_dataset.map(preprocess_function, batched=True)
# **重命名标签字段为 'labels'**
train_dataset = train_dataset.rename_column('label', 'labels')
eval_dataset = eval_dataset.rename_column('label', 'labels')
# 设置数据格式
train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
eval_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# 定义数据整理器
data_collator = DataCollator(tokenizer=tokenizer, padding=False)
# 定义训练参数
args = TrainingArguments(
output_dir='./results',
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
learning_rate=2e-5,
logging_steps=50,
save_steps=200,
evaluation_strategy='steps',
eval_steps=100,
seed=42
)
# 定义回调函数列表
callbacks = [
LoggingCallback(),
EarlyStoppingCallback(patience=2)
]
# 创建Trainer实例
trainer = Trainer(
model=model,
args=args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
callbacks=callbacks
)
# 开始训练
trainer.train()
if __name__ == '__main__':
main()