-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
111 lines (87 loc) · 5.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import logging as pylogging
import tensorflow_addons as tfa
import tensorflow as tf
from absl import app, flags, logging
tf.get_logger().setLevel(pylogging.WARNING)
pylogging.getLogger("googleapiclient").setLevel(pylogging.WARNING)
pylogging.getLogger("oauth2client").setLevel(pylogging.WARNING)
from align import ALIGN
from datasets.imgtxt_dataset import AlignDataset
from warmup_lr import extend_with_warmup_lr
from tensorboard_callback import CustomTensorBoard
flags.DEFINE_string('img_encoder_name', 'efficientnet-b3', 'Image encoder name')
flags.DEFINE_string('txt_encoder_name', 'bert-mini', 'Text encoder name')
flags.DEFINE_integer('batch_size', 2048, 'Global batch size')
flags.DEFINE_float('lr', 0.001, 'learning rate')
flags.DEFINE_float('weight_decay', 1e-5, 'Weight decay')
flags.DEFINE_integer('train_steps', 12000, 'Number of train steps')
flags.DEFINE_integer('warmup_steps', 100, 'Lr Warmup in steps')
flags.DEFINE_float('temperature', 1.0, 'init temperature')
flags.DEFINE_integer('embed_dim', 640, 'Embedding dimension of image & text encoder')
flags.DEFINE_integer('seq_length', 64, 'Maximum text tokens sequence length')
flags.DEFINE_string('dataset_dir', None, 'Directory containing .tfrecord files. Must be gs:// if TPU is used', required=True)
flags.DEFINE_string('outdir', None, 'Directory to save checkpoints and logs. Must be gs:// if TPU is used', required=True)
flags.DEFINE_string('tpu', None, 'TPU name')
FLAGS = flags.FLAGS
def main(argv) -> None:
del argv
tf.io.gfile.makedirs(FLAGS.outdir)
if FLAGS.tpu:
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu=FLAGS.tpu)
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.TPUStrategy(resolver)
policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
tf.keras.mixed_precision.experimental.set_policy(policy)
else:
strategy = tf.distribute.MirroredStrategy()
os.environ["TFHUB_MODEL_LOAD_FORMAT"] = "UNCOMPRESSED"
os.environ["TFHUB_CACHE_DIR"] = FLAGS.outdir
dataset = AlignDataset(FLAGS.dataset_dir, FLAGS.batch_size, FLAGS.seq_length)
train_dataset = strategy.distribute_datasets_from_function(dataset.get_input_fn(is_training=True))
with strategy.scope():
model = ALIGN(FLAGS.img_encoder_name, FLAGS.txt_encoder_name,
embed_dim=FLAGS.embed_dim,
vocab_size=dataset.text_preprocessor.get_vocab_size(),
seq_length=FLAGS.seq_length,
temperature=FLAGS.temperature)
warmed_up = extend_with_warmup_lr(tf.keras.optimizers.schedules.PolynomialDecay)
lr_schedule = warmed_up(FLAGS.warmup_steps, FLAGS.lr, FLAGS.train_steps - FLAGS.warmup_steps,
end_learning_rate=0, power=1.0)
optimizer = tfa.optimizers.LAMB(learning_rate=lr_schedule,
weight_decay_rate=FLAGS.weight_decay,
exclude_from_weight_decay=['bn/'])
steps_per_execution = 100 # run this amount of steps in TPU wihtout coming back to CPU. It's faster to come back to CPU less often.
model.compile(optimizer=optimizer, steps_per_execution=steps_per_execution,
run_eagerly=steps_per_execution == 1)
latest = tf.train.latest_checkpoint(FLAGS.outdir)
if latest:
model.load_weights(latest)
initial_epoch = int(os.path.basename(latest).split('_')[-1])
logging.info(f'Training resume from {initial_epoch} epochs')
else:
initial_epoch = 0
logging.info('Training started from scratch')
callbacks = [
CustomTensorBoard(log_dir=FLAGS.outdir, update_freq=steps_per_execution),
tf.keras.callbacks.ModelCheckpoint(filepath=os.path.join(FLAGS.outdir, 'chpt_{epoch}'),
save_weights_only=True),
tf.keras.callbacks.ProgbarLogger(count_mode='steps',
stateful_metrics={'loss', 'loss_i2t', 'loss_t2i', 'lr', 'temperature'}),
]
# Training runs until train_steps. Epoch is used to manage how often checkpoint is saved.
# Given the default 16k batch, we save checkpoint every 10_000 steps.
# If we use larger batch, we save checkpoint proportionally more often.
batch_scale = FLAGS.batch_size // (16 * 1024)
steps_per_epoch = 10_000 // batch_scale if FLAGS.train_steps > 20_000 else 1_000
logging.info(f'Training batch:{FLAGS.batch_size} batch_scale:{batch_scale} steps_per_epoch:{steps_per_epoch} epoch:{FLAGS.train_steps // steps_per_epoch}')
assert FLAGS.train_steps % steps_per_epoch == 0
model.fit(train_dataset,
initial_epoch=initial_epoch,
epochs=FLAGS.train_steps // steps_per_epoch,
callbacks=callbacks,
steps_per_epoch=steps_per_epoch)
if __name__ == '__main__':
app.run(main)