-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
155 lines (121 loc) · 5.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from model_unet import*
from model_light import*
from config import*
import pandas as pd
from keras.utils import Sequence
if mode=='seg':
model=build_model(img_size)
else:
model = build_regess_model()
im=img_size[0]
img_shape = img_size
train = pd.read_csv(training_df)
test = pd.read_csv(testing_df)
class SnapshotCallbackBuilder:
def __init__(self, nb_epochs, nb_snapshots, init_lr=0.1):
self.T = nb_epochs
self.M = nb_snapshots
self.alpha_zero = init_lr
def get_callbacks(self, model_prefix='Model'):
callback_list = [
callbacks.ModelCheckpoint("keras_temp.model",monitor='val_my_iou_metric',
mode = 'max', save_best_only=True, verbose=1),
swa,
callbacks.LearningRateScheduler(schedule=self._cosine_anneal_schedule)
]
return callback_list
def _cosine_anneal_schedule(self, t):
cos_inner = np.pi * (t % (self.T // self.M)) # t - 1 is used when t has 1-based indexing.
cos_inner /= self.T // self.M
cos_out = np.cos(cos_inner) + 1
return float(self.alpha_zero / 2 * cos_out)
class SWA(keras.callbacks.Callback):
def __init__(self, filepath, swa_epoch):
super(SWA, self).__init__()
self.filepath = filepath
self.swa_epoch = swa_epoch
def on_train_begin(self, logs=None):
self.nb_epoch = self.params['epochs']
print('Stochastic weight averaging selected for last {} epochs.'
.format(self.nb_epoch - self.swa_epoch))
def on_epoch_end(self, epoch, logs=None):
if epoch == self.swa_epoch:
self.swa_weights = self.model.get_weights()
elif epoch > self.swa_epoch:
for i in range(len(self.swa_weights)):
self.swa_weights[i] = (self.swa_weights[i] *
(epoch - self.swa_epoch) + self.model.get_weights()[i])/((epoch - self.swa_epoch) + 1)
else:
pass
def on_train_end(self, logs=None):
self.model.set_weights(self.swa_weights)
print('Final model parameters set to stochastic weight average.')
self.model.save_weights(self.filepath)
print('Final stochastic averaged weights saved to file.')
from parameters import*
sgd = get_optimizer()
snapshot = SnapshotCallbackBuilder(nb_epochs=epochs,nb_snapshots=1,init_lr=1e-3)
batch_size = bs
print("Training a model with batch size : "+str(bs)+"and epochs: "+str(epochs))
swa = SWA('keras_swa_temp'+mode+'.model',np.round(epochs/2)+1)
smooth=1
def my_iou_metric(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return 2*(intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def IOU_calc_loss(y_true, y_pred):
return -my_iou_metric(y_true, y_pred)
if mode=='seg':
model.compile(loss=IOU_calc_loss, optimizer=sgd, metrics=[my_iou_metric])
else:
model.compile(loss=combine_loss,optimizer=Adam(),metrics=[my_metric,smooth_l1_loss])
print("loading model weights from ",model_direc)
model.load_weights(model_direc)
# define the size of each image you want to send to model for training.
train['x1']=train['x1']*(224/640)
train['x2']=train['x2']*(224/640)
train['y1']=train['y1']*(224/480)
train['y2']=train['y2']*(224/480)
data=train[['image_name', 'x1', 'y1', 'x2','y2']].values
train, val = train_test_split(data, test_size=500, random_state=1)
len(train),len(val)
val_a = np.zeros((len(val),)+img_shape,dtype=K.floatx()) # Preprocess validation images
if mode=='seg':
val_b = np.zeros((len(val),)+(224,224,1),dtype=K.floatx())
else:
val_b = np.zeros((len(val),4),dtype=K.floatx())
# Preprocess bounding boxes
for i,j in enumerate(tqdm(val)):
img = read_for_validation(j[0])
val_a[i,:,:,:] = img
if mode=='seg':
val_b[i,:,:,:] = get_mask_seg(img,j[1:])
if mode =='reg':
val_b=val[:,1:]
class TrainingData(Sequence):
def __init__(self, batch_size=32):
super(TrainingData, self).__init__()
self.batch_size = batch_size
def __getitem__(self, index):
start = self.batch_size*index;
end = min(len(train), start + self.batch_size)
size = end - start
a = np.zeros((size,) + img_shape, dtype=K.floatx())
b = np.zeros((size,4), dtype=K.floatx())
b2 = np.zeros((size,) + (224,224,1), dtype=K.floatx())
for i,j in enumerate(train[start:end]):
img = read_for_training(j[0])
a[i,:,:,:] = img
b2[i,:,:,:] = get_mask_seg(img,list(j[1:]))
b=train[start:end,1:]
if mode=='seg':
return a,b2
else:
return a,b
def __len__(self):
return (len(train) + self.batch_size - 1)//self.batch_size
history = model.fit_generator(
TrainingData(bs),epochs=epochs, max_queue_size=12, workers=4, verbose=1,
validation_data=(val_a, val_b),
callbacks=snapshot.get_callbacks(),shuffle=True)