-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutil.py
319 lines (231 loc) · 10.3 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Author: Karl Stratos (me@karlstratos.com)
import math
import torch
import torch.nn as nn
from torch.distributions.multivariate_normal import MultivariateNormal
class DoE(nn.Module):
def __init__(self, dim, hidden, layers, pdf):
super(DoE, self).__init__()
self.qY = PDF(dim, pdf)
self.qY_X = ConditionalPDF(dim, hidden, layers, pdf)
def forward(self, X, Y, XY_package):
hY = self.qY(Y)
hY_X = self.qY_X(Y, X)
loss = hY + hY_X
mi_loss = hY_X - hY
return (mi_loss - loss).detach() + loss
class ConditionalPDF(nn.Module):
def __init__(self, dim, hidden, layers, pdf):
super(ConditionalPDF, self).__init__()
assert pdf in {'gauss', 'logistic'}
self.dim = dim
self.pdf = pdf
self.X2Y = FF(dim, hidden, 2 * dim, layers)
def forward(self, Y, X):
mu, ln_var = torch.split(self.X2Y(X), self.dim, dim=1)
cross_entropy = compute_negative_ln_prob(Y, mu, ln_var, self.pdf)
return cross_entropy
class PDF(nn.Module):
def __init__(self, dim, pdf):
super(PDF, self).__init__()
assert pdf in {'gauss', 'logistic'}
self.dim = dim
self.pdf = pdf
self.mu = nn.Embedding(1, self.dim)
self.ln_var = nn.Embedding(1, self.dim) # ln(s) in logistic
def forward(self, Y):
cross_entropy = compute_negative_ln_prob(Y, self.mu.weight,
self.ln_var.weight, self.pdf)
return cross_entropy
class NWJJS(nn.Module):
def __init__(self, dim, hidden, layers):
super(NWJJS, self).__init__()
self.fXY = FF(2 * dim, hidden, 1, layers)
self.lsig = nn.LogSigmoid()
self.sp = nn.Softplus()
def forward(self, X, Y, XY_package):
N = int(math.sqrt(XY_package.size(0)))
infs = torch.tensor([float('inf')] * N).to(X.device)
S = self.fXY(XY_package).view(N, N)
accept = self.lsig(S).diag().mean()
reject = self.lsig(-S)
reject = (reject - reject.diag().diag()).sum() / N / (N - 1)
js = -(accept + reject)
nwj = (S - infs.diag()).exp().sum() / N / (N - 1) / math.e - \
S.diag().mean()
return (nwj - js).detach() + js
class Interpolated(nn.Module):
def __init__(self, dim, hidden, layers, aY_type, alpha):
super(Interpolated, self).__init__()
assert alpha >= 0 and alpha <= 1
self.fXY = FF(2 * dim, hidden, 1, layers)
self.ln_aY = get_ln_score_function(dim, hidden, layers, aY_type)
self.ln_alpha = math.log(alpha) if alpha > 0 else float('-inf')
self.ln_one_minus_alpha = math.log(1 - alpha) if alpha < 1 \
else float('-inf')
def forward(self, X, Y, XY_package):
N = int(math.sqrt(XY_package.size(0)))
S = self.fXY(XY_package).view(N, N)
ln_aY = self.ln_aY(Y).to(X.device)
joint = self.get_joint_term(S, ln_aY, N)
loo = self.get_loo_term(S, ln_aY, N)
return loo - joint - 1
def get_loo_term(self, S, ln_aY, N):
infs = torch.tensor([float('inf')] * N).to(S.device)
ln_sumexp_Y_loo = (torch.logsumexp(S - infs.diag(), 0)
- math.log(N - 1)).view(N, 1)
ln_interpol_loo = torch.cat([self.ln_alpha + ln_sumexp_Y_loo,
self.ln_one_minus_alpha + ln_aY],
dim=1)
ln_interpol_loo = torch.logsumexp(ln_interpol_loo, 1)
exp_loo = torch.logsumexp(S - ln_interpol_loo - infs.diag(), 0)
exp_loo = (exp_loo.exp() / (N - 1)).mean()
return exp_loo
def get_joint_term(self, S, ln_aY, N):
ln_sumexp_Y = (torch.logsumexp(S, 0) - math.log(N)).view(N, 1)
ln_interpol = torch.cat([self.ln_alpha + ln_sumexp_Y,
self.ln_one_minus_alpha + ln_aY],
dim=1)
ln_interpol = torch.logsumexp(ln_interpol, 1)
joint = (S - ln_interpol).diag().mean()
return joint
class CPC(nn.Module):
def __init__(self, dim, hidden, layers):
super(CPC, self).__init__()
self.fXY = FF(2 * dim, hidden, 1, layers)
self.ce = nn.CrossEntropyLoss()
self.transpose = False
def forward(self, X, Y, XY_package):
N = int(math.sqrt(XY_package.size(0)))
infs = torch.tensor([float('inf')] * N).to(X.device)
S = self.fXY(XY_package).view(N, N)
if self.transpose:
S = S.t()
loss = self.ce(S, torch.tensor([i for i in range(N)]).to(X.device))
return loss - math.log(N)
class SingleSampleEstimator(nn.Module):
def __init__(self, dim, hidden, layers, estimator_type):
super(SingleSampleEstimator, self).__init__()
self.estimator_type = estimator_type
self.fXY = FF(2 * dim, hidden, 1, layers)
def forward(self, X, Y, XY_package):
N = int(math.sqrt(XY_package.size(0)))
infs = torch.tensor([float('inf')] * N).to(X.device)
S = self.fXY(XY_package).view(N, N)
joint = S.diag().mean()
exp_marginal = (S - infs.diag()).exp().sum() / N / (N - 1)
return self.squash(exp_marginal) - joint
def squash(self, exp_marginal):
if self.estimator_type == 'dv':
return exp_marginal.log()
elif self.estimator_type == 'nwj':
return exp_marginal / math.e
else:
raise ValueError('Unknown estimator: %s' % (self.estimator_type))
class MINE(nn.Module):
def __init__(self, dim, hidden, layers, carry_rate=0.99):
super(MINE, self).__init__()
self.fXY = FF(2 * dim, hidden, 1, layers)
self.carry_rate = carry_rate
self.ema = None
def forward(self, X, Y, XY_package):
N = int(math.sqrt(XY_package.size(0)))
infs = torch.tensor([float('inf')] * N).to(X.device)
S = self.fXY(XY_package).view(N, N)
joint = S.diag().mean()
exp_marginal = (S - infs.diag()).exp().sum() / N / (N - 1)
self.ema = exp_marginal.detach() if self.ema is None else \
self.carry_rate * self.ema + \
(1 - self.carry_rate) * exp_marginal.detach()
mine_loss = (1 / self.ema) * exp_marginal - joint
dv_loss = self.ema.log() - joint
return (dv_loss - mine_loss).detach() + mine_loss
class TUBA(nn.Module):
def __init__(self, dim, hidden, layers, aX_type):
super(TUBA, self).__init__()
self.fXY = FF(2 * dim, hidden, 1, layers)
self.ln_aX = get_ln_score_function(dim, hidden, layers, aX_type)
def forward(self, X, Y, XY_package):
N = int(math.sqrt(XY_package.size(0)))
infs = torch.tensor([float('inf')] * N).to(X.device)
S = self.fXY(XY_package).view(N, N) - self.ln_aX(X).to(X.device)
joint = S.diag().mean()
exp_marginal = (S - infs.diag()).exp().sum() / N / (N - 1)
return exp_marginal - joint - 1
class LnConstant(nn.Module):
def __init__(self, c):
super(LnConstant, self).__init__()
self.c = c
def forward(self, X):
return torch.tensor([math.log(self.c)] * X.size(0)).view(X.size(0), 1)
class LnStandardNormal(nn.Module):
def __init__(self, dim):
super(LnStandardNormal, self).__init__()
self.pdf = MultivariateNormal(torch.zeros(dim), torch.eye(dim))
def forward(self, X):
return self.pdf.log_prob(X).view(X.size(0), 1)
class FF(nn.Module):
def __init__(self, dim_input, dim_hidden, dim_output, num_layers,
activation='tanh', dropout_rate=0, layer_norm=False,
residual_connection=False):
super(FF, self).__init__()
assert (not residual_connection) or (dim_hidden == dim_input)
self.residual_connection = residual_connection
self.stack = nn.ModuleList()
for l in range(num_layers):
layer = []
if layer_norm:
layer.append(nn.LayerNorm(dim_input if l == 0 else dim_hidden))
layer.append(nn.Linear(dim_input if l == 0 else dim_hidden,
dim_hidden))
layer.append({'tanh': nn.Tanh(), 'relu': nn.ReLU()}[activation])
layer.append(nn.Dropout(dropout_rate))
self.stack.append(nn.Sequential(*layer))
self.out = nn.Linear(dim_input if num_layers < 1 else dim_hidden,
dim_output)
def forward(self, x):
for layer in self.stack:
x = x + layer(x) if self.residual_connection else layer(x)
return self.out(x)
class CorrelatedStandardNormals(object):
def __init__(self, dim, rho, device):
assert abs(rho) <= 1
self.dim = dim
self.rho = rho
self.pdf = MultivariateNormal(torch.zeros(dim).to(device),
torch.eye(dim).to(device))
def I(self):
num_nats = - self.dim / 2 * math.log(1 - math.pow(self.rho, 2)) \
if abs(self.rho) != 1.0 else float('inf')
return num_nats
def hY(self):
return 0.5 * self.dim * math.log(2 * math.pi)
def draw_samples(self, num_samples):
X, ep = torch.split(self.pdf.sample((2 * num_samples,)), num_samples)
Y = self.rho * X + math.sqrt(1 - math.pow(self.rho, 2)) * ep
return X, Y
def compute_negative_ln_prob(Y, mu, ln_var, pdf):
var = ln_var.exp()
if pdf == 'gauss':
negative_ln_prob = 0.5 * ((Y - mu) ** 2 / var).sum(1).mean() + \
0.5 * Y.size(1) * math.log(2 * math.pi) + \
0.5 * ln_var.sum(1).mean()
elif pdf == 'logistic':
whitened = (Y - mu) / var
adjust = torch.logsumexp(
torch.stack([torch.zeros(Y.size()).to(Y.device), -whitened]), 0)
negative_ln_prob = whitened.sum(1).mean() + \
2 * adjust.sum(1).mean() + \
ln_var.sum(1).mean()
else:
raise ValueError('Unknown PDF: %s' % (pdf))
return negative_ln_prob
def get_ln_score_function(dim, hidden, layers, function_type):
if function_type == 'e':
return LnConstant(math.e)
elif function_type == 'ff':
return FF(dim, hidden, 1, layers)
elif function_type == 'lp':
return LnStandardNormal(dim)
else:
raise ValueError('Unknown function type: %s' % (function_type))