Some implementation details from the smecc compiler

Ronan KERYELL (Ronan.Keryell@silkan.com)

December 10, 2012

Contents
1 Introduction 1
2 OpenMP support 1

3 Mapping on accelerators 2
3.1 Mapping on OpenCL e 2
3.2 Mapping on STHORM MCA API 6

3.2.1 Addressing model 6
3.2.2 Memory model 7
3.2.3 Runtime execution 7
3.2.4 Code transformation e 8

4 SMECY low level hardware API 10
5 Compilation 12
5.1 Example of OpenCL mapping 12
5.2 Example of EAkDSP mapping o 12
5.3 OpenMP support 12
5.4 Doxygen qualifiero 12
5.5 Cqualifier L 12
5.6 Generating communications from pragma 13
5.7 Compilation for streaming computing 14
5.8 Geometric inference L 16

1 Introduction

The
shorter

the bet-
ter.

2 OpenMP support

SME-C is a single program model (SPMD) based on OpenMP as its core model with the OpenMP

program being the controller of the whole application driving some miscellaneous accelerators.
In our implementation, our compiler keep the OpenMP pragma in the output main program.
The OpenMP pragma inside some piece of code mapped to accelerators may be discarded if it

does not make sense, for example if it is translated to an OpenCL kernel or if it is replaced by a
piece of hardware (FPGA...).

11

16

21

3 Mapping on accelerators

The mapping of a function call on a specific piece of hardware can be specified with pragma
describing where the function is to be run and optionally what arguments have to be transferred
before execution and what has to be retrieved after execution:

#pragma smecy map(hardware[, untt]*)
#pragma smecy arg(arg_td, arg_clause[, arg_clause]...)
some_function_call(...);

e hardware is a symbol representing a hardware component of a given target such as CPU,
GPP, GPU, PE... They are target specific.

e unit entries are optional hierarchical instance number for a specific hardware part. This
is typically an integer starting a 0. This hardware number can be an expression of the
environment to be able to have a loop managing different accelerators.

3.1 Mapping on OpenCL

The OpenCL can be used to target accelerators like GPU, STHORM or other multicores.
For example the SME-C program

#define N 1000
#include <stdio.h>

void init_array (int a[N][N]) {
/* The OpenMP part is understood by smecc/ParjAll to generate 2D OpenCL
workitems */
#pragma omp parallel for
for (int i = 0; i < N; i++4)
#pragma omp parallel for
for (int j = 0; j < N; j++)
alil[j] = 2¢i + 3%j;

}

int main() {
int a[N][N];

#pragma smecy map(OpenCL) arg(a, out)
init_array (a);

printf(7a[27][42] =%d\n”, a[27][42]);

return 0;

}

is analyzed by the smecc compiler to generate an XML description file to explain to the Par4All
compiler that the init_array () function is parallel and has to be transformed to an OpenCL kernel,
with some memory transfers.

Then Par4All compiles the previous file to into 2 files, one for the host program running on
the main CPU:

/+ Use the ParfAll accelerator run time: x/
#include <p4da_accel.h>

P4A _wrapper_proto(p4a_wrapper_init_array, j, i, a);
V&

x file for init_a.c

*/

#include <stdio.h>

10

15

20

25

30

35

40

45

50

void init_array (int a[1000][1000]);

int main();

//PIPS generated wvariable

void p4a_launcher_init_array (int xa);

//PIPS generated variable;

//PIPS generated wvariable;

//PIPS generated variable

void P4A_accel_malloc(void #xaddress, size_-t size);
//PIPS generated variable

void P4A copy_from_accel_2d (size_t element_size, size_t dl_size, size_t d2_size, size_t dl_
//PIPS generated variable

void P4A _accel_free(void xaddress);

void p4a_launcher_init_array (int xa)

{
//Opencl wrapper declaration
//PIPS generated variable
int i;
int j;
P4A _call_accel_kernel_2d (p4a_wrapper_init_array , 1000, 1000, j, i, a);
}
void init_array (int a[1000][1000])
{
{
//PIPS generated wvariable
int (xpd4a_var_a0)[1000][1000] = (int (%)[1000][1000]) O;
P4A_accel_malloc ((void #*x*) &pda_var_a0, sizeof(int)*x1000000);
p4a_launcher_init_array ((int x) xpda_var_a0);
P4A _copy-from_accel_2d (sizeof(int), 1000, 1000, 1000, 1000, 0, O, &a[0][0], *pda_var_:
P4A _accel_free (p4a_var_a0);
}
}

int main ()

P4A _init_accel;
int a[1000][1000];

#pragma smecy map(OpenCL) arg(a, out)
init_array (a);

printf(?a[27][42] =%d\n”, a[27][42]);

return 0;

and an OpenCL file describing the kernel to be run on the accelerator:
Jxx Qfile
API of Par4All C to OpenCL for the kermnel wrapper and kernel.
Funded by the FREIA (French ANR), TransMedi\@ (French Péle de
Compétitivité Images and Network) and SCALOPES (Artemis European
Project project), with the support of the MODENA project (French
Péle de Compétitivité Mer Bretagne)

"mailto : Stephanie. Fven@enstb. org”

"mailto : Ronan. Keryell@hpc—project.com”

This work is done under MIT license.

*/

#ifndef P4A_ACCEL.-WRAPPER_CL_H
#define P4A_ACCEL.WRAPPER_CL_H

/*x @defgroup P4A_qualifiers Kernels and arguments qualifiers

af
«/

/+*+x A declaration attribute of a hardware—accelerated kernel in CL
called from the GPU it—self

This is the return type of the kernel.
The type is here undefined and must be locally defined.
*
/
/* change this define to wvoid:
#define P4A_accel_kernel inline
*/
#define P4A _accel_kernel void

/*x A declaration attribute of a hardware—accelerated kernel called from
the host in CL

This is the return type of the kernel wrapper.
It must be a void function.
Type used in the protoizer.

*/

#define P4A _accel_kernel _wrapper __kernel void

/% The address space wvisible for all functions.
Allocation in the global memory pool.
*/

#define P4A _accel_global_address __global

/*x The address space in the global memory pool but in read—only mode.

*/

#define P4A _accel_constant_address __constant

/% The address space wvisible by all work—items in a work group.
This is the <<shared>> memory in the CUDA architecture.
Can’t be initialized

x* __local float a = 1; is not allowed
x __local float a;
a = 1; is allowed.

*/
#define P4A _accel_local_address __local

/**% Get the coordinate of the wvirtual processor in X (first) dimension in
CL

*/
#define P4A _vp. 0 get_global_id (0)

/*x% Get the coordinate of the wvirtual processor in Y (second) dimension in

CL

*/
71 #define P4A_vp_1 get_global_id (1)

/*% Get the coordinate of the wvirtual processor in Z (second) dimension in

CL
*/
76 #define P4A_vp_2 get_global_id (2)

/*
The OpenCL extension cl_-khr_byte_addressable_store removes certain
restrictions on built—in types char, wuchar, char2, wuchar2, short, and
81 half. An application that wants to be able to write to elements of a
pointer (or struct) that are of type char, uchar, char2, uchar2,
short , ushort, and half will need to include the #pragma OPENCL
EXTENSION cl_khr_byte_addressable_store : enable directive before any
code that performs writes that may not be supported.
86 x/
#ifdef cl_khr_byte_addressable_store
#pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable
#endif

91 /x
Pragma to support double floating point precision

* x/

#ifdef cl_khr_fp64
96 #pragma OPENCL EXTENSION cl_khr_fp64 : enable

#elif defined (cl.amd_fp64)

#pragma OPENCL EXTENSION cl_amd_fp64 : enable

#else

#warning ” Your.OpenCL._device._.doesn’t_support._.double_precision”
101 #endif

// Required for loop wunrolling
#define MOD(x,n) ((x)%(n))
#define MAX0(x,n) max(x,n)

106

111/

#endif //PJA_ACCEL_.WRAPPER_CL.H
/*
x file for pfa_kermel_init_array.c
116 */
//PIPS generated variable
P4A _accel_kernel p4a_kernel_init_array(int j, int i, P4A_accel_global_address int
*a) ;
//

// This module was automatically generated by PIPS
121 //

//PIPS generated wvariable
P4A _accel_kernel_wrapper pda_wrapper_init_array (int j, int i, P4A_accel_global_address int
*a) ;

P4A _accel_kernel_wrapper pda_wrapper_init_array (int j, int i, P4A_accel_global_address int
*a)
126 {
// Index has been replaced by P4A_vp_1:
i = P4A _vp_1;
// Index has been replaced by P4{A_vp_0:
j = P4A vp 0;

131 p4a_kernel_init_array (j, i, a);
}
P4A _accel_kernel p4a_kernel_init_array(int j, int i, P4A _accel_global_address int
*a)
{

if (i<=999&&j <=999)
136 #(a+(1000%i+])) = 2%i+3%j;

The OpenCL is indeed hidden in some higher-level macros beginning with P4A_ to have terser
code. For example P4A_call_accel_kernel_2d call the OpenCL API to compile the kernel,
stacking the call parameters and launching the kernel with the correct NDRange. This allows to
redirect more easily the compilation to CUDA for example by changing the macro definitions.

Implementation limitations:

e an execution flow already mapped on a GPU kernel cannot launch another kernel because
of the current OpenCL restriction?;

e all the program has to be written in C, not C++.

3.2 Mapping on STHORM MCA API

The STHORM platform is a MP-SoC with a 2-core ARM processor Cortex-A9 running Linux and
an accelerator fabric with a 2D array of clusters, each with 16 processing elements (PE).

3.2.1 Addressing model

The MCA API contain the MCAPI message passing interface for embedded system devices using
an hierarchical addressing model made as a triplet < domain, node, port >

The addressing model chosen by CEA for STHORM is to use the domain number to select the
clusters or the ARM host and use the node numbers to select a PE inside the cluster selected by
the domain number.

The domain numbering chosen by CEA for a cluster (z,y) € (N/nN) x (N/mN) inside a n x m
cluster machine is a plain 2D linearization:

d=yxn+zx

and the ARM host processor has the domain number n x m + 1 with node number 0.

An example for the 2 x 2 cluster simulator we use is shown on Figure 1.

Since the SME-C programming model is a SPMD model, by default all the code runs on the
host AMD processor, which is for example on domain 5 node 0, perhaps with several OpenMP
threads.

By using pragma such as

#pragma smecy map(STHORM, 1, 3)

the execution of a function can be synchronously executed in the STHORM fabric on the PE 3 of
cluster 1.

Since for an execution on a PE the ARM processor has to launch a function on it and there
are many PEs, the function to be executed has to be large grain.

1But this could be done in CUDA 5 with some recent K20 GPU.

Domain 3

[c |

MCAPI domain

Figure 1: MCAPI addressing model for a STHORM platform with 2 x 2 clusters.

3.2.2 Memory model

The memory model on STHORM is hierarchical and partially shared between the ARM host
processor and the fabric.

The global DDR memory, called the L3 memory, is shared in a weakly coherent way by the
host processor and the fabric PEs, through a global L2 cache.

This means that a multithread program running on the various cores and with the right syn-
chronization could run in parallel just by sharing information though the L3 memory. Unfor-
tunately, for power efficiency reasons, there is no system like on a GPU to deal with coalescing
multiple accesses to the memory into a big one to improve efficiencyof the memory access. This

means that the accesses will be slow.
To improve the efficiency, the local memory shared by the PEs of a cluster or the private
memory to a PEhave to be used by placing the data in the right place.

3.2.3 Runtime execution

Memory allocation

Our implementation is based on ST STHORM runtime. During nodes initialization and chan-
nels connection we call ST memory allocators. User may want to use directly these memory
allocators. If it is the case user can refer to ST STHORM Runtime documentation [6]. Extract of
[6] which lists all the memory allocators accessible from CC :

void x CC_13Malloc (int size)
void CC_13Free (void #*ptr)
void % CC_enMalloc (int size)
void CC_enFree (void #ptr)
void % CC_malloc (int size)
void CC_free (void #ptr)

14

19

24

29

8

3.2.4 Code transformation

The basic compilation scheme to generate MCAPI from the SME-C original code is to generate
several files:

e 1 host file running the host code on the Cortex-A9, an OpenMP C or C++ program with
some calls to MCAPI functions to interact with the PEs;

e as many source codes there are PEs, with the dual MCAPI function calls to get some data
and to respond to the remote procedure calls from the hosts.

In this current implementation, since the host can chose at run-time the PE on which a
function will be executed, all the mapped functions are loaded on the PEs and the real function
to be executed is selected from a previous MCAPI communication.

For example the examples/simple_map.c

#include <stdio.h>

#define N 10
#define M 5

void init (intx array, int size, int scale) {
for (int i = 0; i < size; i++4)
array [1] = ixscale;
}

int main() {
int tab[N][M];
/* The schedule (static, 1) enforces each iteration to be ezecuted in a
different thread, whatever the number of CPU is: x/
#pragma omp parallel for schedule(static, 1)
for (int i = 0; i < N; i++) {
// Map on STHORM cluster 0 PE i:
#pragma smecy map(STHORM, 0, i)
arg (1,0ut , [N][M],/[i](]) \
arg(2,in) \
arg (3,in)
init(&tab[i][0], M, i+1);
}

for (int i = 0; i < N; i++) {
printf(”Line %d.:”, 1);
for (int j = 0; j <M; j++)
printf (?%d.”, tab[i][j]);
puts ("7)

return 0;

}

is compiled to 2 files, a STHORM_rose_simple_map.c file which is to be compiled for the Cortex
A9 ARM host with this content:

#include <stdio.h>
#define N 10
#define M 5
#include ”smecy.h”

int main ()

int tab[10UL][5UL];

13

18

23

28

12

12

/% The schedule(static, 1) enforces each iteration to be ezecuted in a
different thread, whatever the number of CPU is: x/

#pragma omp parallel for schedule (static, 1)

for (int i = 0; i < 10; i++) {
SMECY _set (init ,STHORM,0,1i);
SMECY _prepare_get_arg_vector (init ,1,int,(tab[i] + 0),5,STHORM,0,1i);
SMECY _send.arg(init ,2,int ,5 ,STHORM, 0,1);
SMECY _send_arg(init ,3,int ,(i + 1) ,STHORM,0,1i);
SMECY _launch (init ,3 ,STHORM,0 ,1i);
SMECY _get_arg_vector (init ,1,int,(tab[i] + 0),5,STHORM,0,i);

}

for (int i = 0; i < 10; i++) {
printf(”Line %d.:” ,i);
for (int j = 0; j < 5; j++)

printf ("%d.” ,tab[i][]])

puts (77);

)

return 0;

}

the effect of SMECY_set (init,STHORM,0,1) is to prepare the selection of init () on the STHORM
PE of coordinate (0,4) by sending a first MCAPI packet to prepare the execution of the following.
The STHORM_fabric.c to be executed on the processors elements of the STHORM fabric that

will launch all the threads is constructed by outlining the function calls to be executed to the
fabric and only then adding the MCAPI macros. This way, we can have a function object to be
given to the STHORM run-time that contains the MCAPI macros:

#include ”smecy.h”

// Provide extern call awaited by STHORM MCAPI implementation
void mcapi_-domain_entry ()

{

SMECY _accelerator_loop_begin (init ,STHORM,0 ,1i);
SMECY _set(init ,STHORM,O0 ,1i);
SMECY _prepare_get_arg_vector (init ,1,int,(tab[i] + 0),5,STHORM,0,i);
SMECY _send_arg (init ,2,int ,5 ,STHORM,0,1i);
SMECY _send.arg(init ,3,int ,(i + 1),STHORM,0,i);
SMECY _launch (init ,3 ,STHORM,0 ,1i);
SMECY _get_arg_vector (init ,1,int,(tab[i] + 0),5,STHORM,0,i);
and for each MCAPI kernel to be launched on a PE, a file like STHORM_PE_simple_map_init.c
with the code for the init function in this example with:
#include <stdio.h>
#define N 10

#define M 5
#include ”smecy.h”

void init (int xarray,int size ,int scale)

{

for (int i

0; i < size; i++)

array[i] = (i * scale);
}
void STHORM_PE_simple_map_init ()
{

SMECY _accelerator_loop_begin (init ,STHORM,0,1i);
SMECY _set (init ,STHORM, 0,1);

17

22

14

19

24

29

SMECY _prepare_get_arg_vector (init ,1,int,(tab[i] + 0),5,STHORM,0,i);
SMECY _send.arg (init ,2,int ,5 ,STHORM, 0,1);
SMECY _send_arg(init ,3,int ,(i + 1) ,STHORM,0,1i);
SMECY _launch (init ,3 ,STHORM,O0,1i);
SMECY _get_arg_vector (init ,1,int ,(tab[i] + 0),5,STHORM,0,i);
SMECY _accelerator_loop_end (init ,STHORM,0,1i);
}

All the SMECY_ have different meanings in the 3 different use cases, so that mainly only one code
is interpreted differently for the right purpose.

4 SMECY low level hardware API

To call real hardware accelerators, few C macros are needed to interface a program running on
some processor to a function running on another processor or in some hardware accelerator.

Since the implementation may depend also on the processor calling the macros (not the same
IO bus will be used from an 86 or a DSP to call the same operator), a global preprocessing
symbol must be defined by the compiler before using these macros, such as

#define SMECY LOCALPROC x86
or

#define SMECYLOCALPROC DSP

Few macros are necessary:

/+* Prepare a processing element to ezxecute a function

@param pe is the symbol of a processing element, such as GPP, DSP, PE...
@param[in] instance is the instance number of the processor element to use
@param func is the function to load on the processor element

pe is mot a string because it is easy to make a string from it but not
the opposite. The same for func
*/

#define SMECY set(pe, instance, func)
/+* Send a scalar argument to a function on a processing element

@param pe is the symbol of a processing element, such as GPP, DSP, PE...
@param[in] instance is the instance number of the processor element to use
@param func is the function running on the processor element
@param[in] arg is the argument instance to set
@param type is the type of the scalar argument to send
@param[in] wval is the wvalue of the argument to send

*/

#define SMECY_send_arg(pe, instance, func, arg, type, val)

/* Send a vector argument to a function on a processing element

@param pe is the symbol of a processing element, such as GPP, DSP, PE...
@param[in] instance is the instance number of the processor element to use
@param func is the function to load on the processor element
@param[in] arg is the argument instance to set
@param type is the type of the wvector element to send
@param[in] addr is the starting address of the wvector to read from
caller memory
@param [in] size is the length of the wvector

10

34

39

44

49

54

59

64

69

74

79

84

89

#define SMECY _send_arg_vector (pe, instance, func, arg, type, addr, size)

/* Launch the hardware function or remote program using previously loaded

arguments

@param pe is the symbol of a processing element, such as GPP, DSP, PE...

@param [in]
@param func

instance 1is the instance number of the processor element to use
is the function to load on the processor element

A kernel can be launched several times without having to set/reset its function.

*/

#define SMECY _launch(pe, instance, func)

/* Get the return wvalue of a function on a processing element

@param pe is the symbol of a processing element, such as GPP, DSP, PE...
@param[in] instance is the instance number of the processor element to use

@param func
@param type
@return the

*/

is the function to load on the processor element
is the type of the scalar argument to send
value computed by the function

#define SMECY _get_return(pe, instance, func, type)

/+* Get a vector wvalue computed by a function on a processing element

@param pe is the symbol of a processing element, such as GPP, DSP, PE...
@param[in] instance is the instance number of the processor element to wuse

@param func

is the function to load on the processor element

@param[in] arg is the argument instance to retrieve

@param type
@param [out]

@param [in]

*/

is the type of the wvector element

addr is the starting address of the wvector to write in
caller memory

size 1s the length of the wvector

#define SMECY _get_arg_vector (pe, instance, func, arg, type, addr, size)

/+* Prepare the

retrieving of a vector wvalue that will be computed by a

function on a processing element.

Typically ,

it can be used to allocate software or hardware resources

for the later SMECY_get_arg_-vector ().

@param pe is the symbol of a processing element, such as GPP, DSP, PE...
@param[in] instance is the instance number of the processor element to use

@param func

is the function to load on the processor element

@param[in] arg is the argument instance to retrieve

@param type
@param [out |

is the type of the wvector element
addr is the starting address of the vector to write in
caller memory

@param [in] size is the length of the wvector

*/

#define SMECY _future_get_arg_vector (pe, instance, func, arg, type, addr, size)

/*+ Reset a processing element to execute a function

@param pe is the symbol of a processing element, such as GPP, DSP, PE...
@param[in] instance is the instance number of the processor element to use

@param func

i1s the fumction to wunload from the processor element

11

This is used for example to remove consuming resources to decrease
94 power. Giving here the function name may be useful for weird case to
avoid having short—circuit between CLB in a FPGA during unconfiguring stuff
*/
#define SMECY _reset(pe, instance, func)

There is also a macro for an asynchronous call and to wait for completion.

5 Compilation

5.1 Example of OpenCL mapping

A typical mapping of the SMECY low level hardware API shown on § 4 would be organized as
follows:

e SMECY_set(PE, proc & 7, invert_vector):
clCreateProgramFromSource() + clBuildProgramExecutable() + clCreateKernel ()

e SMECY_send_arg(PE, proc & 7, invert_vector, 1, int, LINE_SIZE):
clSetKernelArg()

e SMECY_send_arg_vector(PE, proc & 7, invert_vector, 2, int,...):
clCreateBuffer() + clSetKernelArg() (+ clEnqueueWriteBuffer())

e SMECY_launch(PE, 0, invert_vector):
clExecuteKernel ()

e SMECY_get_arg_vector(PE, proc & 7, invert_vector, 3, ...):
clEnqueueReadBuffer ()
5.2 Example of EAkDSP mapping
5.3 OpenMP support
From the programmer point of view it may be equivalent to have

e an OpenMP compiler generating SMECY API code such as the parallelism between SMECY
target accelerators is run by OpenMP threads dealing each one with an hardware resource
sequentially in a synchronous way;

e or a SMECY compiler understanding the OpenMP syntax and generating directly some
parallel execution of SMECY accelerators in an asynchronous way.

5.4 Doxygen qualifier

In the Doxygen documentation mark-up language used in comments to detail various entities of
a program, there are information such as in, out or inout qualifier on function parameters that
can be used to generate the right communication with some hardware accelerators.

5.5 C qualifier

Qualifiers such as const attribute qualifier, address space names, register names, accumulator,
saturation, etc. are used to generate the right target function or instruction.

12

5.6 Generating communications from pragma

Of course the pragma information is heavily used in the compilation process.
For example to generate correct communication, the mapping information is used, and from

the used/defined information plus optional remapping information, a real communication with an
API is used.

void
invert_vector (int line_size ,
int input_line[line_size],
int output_line[line_size]) {
for(int i = 0; i < line_size; i++)

output_line[i] = 500 — input_line[i];
}
int image [HEIGHT | [WIDTH] ;
#pragma smecy map(PE, proc & 7) \

arg (2, in, [1][LINE_SIZE]) \
arg (3, out, [1][LINE_SIZE])
// Invert an horizontal line:
invert_vector (LINE_SIZE,
&image [HEIGHT — 20 — proc | [WIDTH/2 + 2xproc],
&image [HEIGHT — 20 — proc | [WIDTH/2 4 2xproc]);

can be compiled into

int image [HEIGHT | [WIDTH] ;
/* First prepare the PE #(proc & 7) hardware to exzecute invert_vector.
That may be used to load some program or microcode, reconfigure a
FPGA, load/compile an OpenCL kernel... x/
SMECY _set (PE, proc & 7, invert_vector);
/+* Send the WIDTH integer as arg 1 on invert_vector hardware function on
PE #(proc & 7): x/
SMECY _send._arg (PE, proc & 7, invert_vector, 1, int, LINE_SIZE);
/+* Send a wvector of int of size LINESIZE as arg 2 on invert_vector
hardware function on PE #(proc & 7): x/
SMECY _send_arg_vector (PE, proc & 7, invert_vector, 2, int,
&image [HEIGHT — 20 — proc | [WIDTH/2 + 2xproc], LINE_SIZE);
// Launch the hardware function or remote program:
SMECY _launch (PE, 0, invert_vector);
/* Get a vector of int of size LINE.SIZE as arg 3 on invert_vector
hardware function on PE #(proc & 7): x/
SMECY _get_arg_vector (PE, proc & 7, invert_vector , 3, &image [HEIGHT — 20 — proc]
[WIDTH/2 + 2xproc],
LINE_SIZE);

with low level macros described in § 4.

invert_vector () is either an already implemented function in a hardware library, or it is compiled
by a target specific compiler with some callable interface.

For more complex calls needing remapping, such as:

int input_line [LINE_SIZE];

int output_line [LINE_SIZE];

/* We need to remap data in the good shape. The compiler should use
the remapping information to generate DMA tramnsfer for example and
remove input_line array x/

SMECY _remap_int2D_to_int1D (HEIGHT, WIDTH, HEIGHT/3, 30 + 20%proc,

LINE_SIZE, 1, image,
LINE_SIZE, input-line);
// Each iteration 1is on a different PE in parallel:

13

#pragma smecy map(PE, proc) arg(2, in, [LINE_SIZE]) arg(3, out, [LINE_SIZE])
invert_vector (LINE_SIZE, input_-line, output_-line);
SMECY _remap_int1D_to_int2D (LINE_SIZE, output_line ,
HEIGHT, WIDTH, HEIGHT/3, 30 + 20%proc,
LINE_SIZE, 1, image);

is compiled by using other hardware interfaces involving more complex DMA:

// May not be wuseful if this function is already set:

SMECY _set (PE, proc & 7, invert_vector);

/+ Send the WIDTH integer as arg 1 on invert_vector hardware function on

PE #(proc & 7): x/
SMECY _send_arg (PE, proc & 7, invert_vector, 1, int, LINE_SIZE);
/+ Send a wvector of int of size LINE_SIZE as arg 2 on invert_vector
hardware function on PE #(proc & 7) but read as a part of a 2D array: */
smecy._send_arg_int _DMA_2D_PE_0O_invert_vector (3, &image [HEIGHT — 20 — proc|
[WIDTH/2 + 2%proc],
HEIGHT, WIDTH, HEIGHT/3, 30 + 20xproc,
LINE_SIZE, 1);

SMECY _send_arg_DMA _2D _to_1D (PE, proc & 7, invert_vector, 2, int,
&image [HEIGHT — 20 — proc | [WIDTH/2 + 2%proc],
HEIGHT, WIDTH, HEIGHT/3, 30 + 20%proc,
LINESIZE, 1);

// Launch the hardware function or remote program:

SMECY _launch (PE, 0, invert_vector);

SMECY _get_arg_.DMA_1D_to_2D (PE, proc & 7, invert_vector, 3, int,
&image [HEIGHT — 20 — proc | [WIDTH/2 + 2%proc],
HEIGHT, WIDTH, HEIGHT/3, 30 + 20%proc,
LINE_SIZE, 1);

5.7 Compilation for streaming computing

If we come back on the example shown in § 7?7 on page ?7, this program is given to the source-
to-source stream compiler that may generate the following output (only partially shown, the type
definitions are missing):

/* Definition of procedures x/
int main(void)

{
typ-7 data_buffer;
typ-21 datal2Link;
datal2Link = pth_CreateDbLink (512);
pth_CreateProcess((&_--Nodel), datal2Link);
pth_CreateProcess((&__Node2), datal2Link);
pause ();
return 0;
}
static void __outlinedproc2(typ-9 data_buffer)
{
Consume (((typ-4)data_buffer));
}
static void __outlinedprocl(typ-9 data_buffer)
{
Produce (((typ-4)data_buffer));
}

static void __Nodel(typ-21 datal2Link)

14

24

29

34

39

44

14

19

typ-9 data_bufferOut;

typ-4 tmpO;

typ-4 tmpl;

tmp0 = DbLinkGetInitBuff(datal2Link);

data_bufferOut = ((typ-9)tmp0);
while (1)
__outlinedprocl (data_bufferOut);
tmpl = DbLinkPutData(datal2Link);
data_bufferOut = ((typ-9)tmpl);
}
}
static void __Node2(typ-21 datal2Link)
{
typ-9 data_bufferln;
typ-4 tmpO;
while (1){
tmp0 = DbLinkGetData(datal2Link);
data_bufferIn = ((typ-9)tmp0);
__outlinedproc2 (data_bufferIn);
}
}

The last two functions are __Nodel() and __Node2(). These are the functions that run in the
two processes. These two functions are the wrappers around the user code, which is embedded
in the two __oulined. .. functions. These wrappers take care of the data communications. For
every communication channel, they manage a double-buffered scheme that minimizes the amount
of copying.

In more realistic settings than this simple send/receive scheme, the wrapper function become
quickly more complex and non-trivial to maintain manually.

The generated code contains calls to the following communication library:

/*

* Create a double buffered communication link

x with each buffer the given size in bytes x/
DbLink createDbLink(int size) ;

/*

x Get a pointer to a free output buffer from the
% link. The pointer must be given back in the

x call to DbLinkPutData */

void #*DbLinkGetInitBuf(DbLink outputLink) ;

/*

* Get a pointer to data out of the link. This

* 18 a read action of the link. The data pointed
* to 1s wvalid until the next read. x/

void #DbLinkGetData(DbLink inputLink) ;

/*

* Output the data pointed to over the link. The
* pointer must have been previously obtained from
x the link. x/

data_bufferOut = DbLinkPutData(data_bufferOut) ;

And finally there is also the process creation call:
int pth_CreateProcess(int (xf)(), ...);

This library is not intended to become part of the SMECY-API described for example in § 77
or 4. Instead, the library is intended for easy porting to SMECY-API, while taking advantage of

15

the most efficient communication implementation for the specific target architecture. Currently,
a pthreads-based implementation exists.

This is just an example of a compilation path and it should be easy to generate a C++ TBB
(Thread Building Block) target code using for example the tbb::pipeline, a more low-level
OpenMP runtime based on parallel sections or parallel task pragma, or even an MPI or
MCA API for distributed memory execution.

5.8 Geometric inference

In the OpenMP SMP model, there is a global memory (well, with a weak coherence model) that
may not exist in the execution model of a given target. For example, even if 2 hardware accelerators
exchange information through memory according to the high-level programming model, in the real
world we may have 2 processors communicating through message passing with MCAPI on a NoC
or 2 hardware accelerators connected through a pipeline.

To solve this issue, we use the OpenMP global memory like a scoreboard memory that is used
to symbolically relate all the data flows and generates various communication schemes.

Since the memory dependencies are expresses by hyperparallelepipedes, we can do some inter-
section analysis to compute if a communication is needed or not between 2 devices of the target.

16

