
SME-C v0.5

—

C99 with pragma and API for parallel execution, streaming,

processor mapping and communication generation

—

SMECY Artemis European Project

Rémi Barrère (Remi.Barrere@thalesgroup.com)
Marcel Beemster (marcel@ace.nl)

Ronan Keryell (Ronan.Keryell@silkan.com)

December 10, 2012

Contents

1 Introduction 2
1.1 SMECY programming model . 2
1.2 SME-C Streaming Model . 4

1.2.1 Background . 4
1.2.2 Goals . 4
1.2.3 Status as of June 2011 . 4
1.2.4 Future Extensions (not Implementation Related) 5

1.3 Reference documents . 5

2 Intermediate representation use cases 5
2.1 Direct programming . 6
2.2 System high-level synthesis . 6
2.3 Hardware high-level synthesis . 6

3 Exemples 6
3.1 Program with contiguous memory transfers . 6
3.2 Program with non-contiguous memory transfers . 9
3.3 Pipelined example . 10
3.4 Remapping example . 10

4 Description of high level process structure 13

5 SMECY embedded C language 13

6 Description of the SMECY directives 14
6.1 OpenMP support . 14
6.2 Mapping on hardware . 14
6.3 Producer/consumer information . 15

6.3.1 Function arguments . 15
6.3.2 Global variables . 16

1

6.4 Stream programming . 16
6.5 Labelling statement . 16
6.6 Remapping specification . 16
6.7 Hardware specific pragma . 16

7 SMECY high-level APIs 17
7.1 OpenMP . 17
7.2 MultiCore Association APIs . 17
7.3 Multicore Communication API (MCAPI) . 17

7.3.1 MTAPI . 17
7.3.2 MRAPI . 17

7.4 NPL API . 18
7.5 EdkDSP/ASVP API . 18
7.6 OpenCL . 18

8 Some design patterns for STHORM SME-C 18
8.1 Same computation on all the PEs . 18
8.2 Same computation on all the PEs of a cluster . 19
8.3 Stream computation through the PEs of a cluster 20
8.4 Systolic computation with the PEs of a cluster . 21
8.5 Round robin computation on the clusters . 23

9 Conclusion 24

1 Introduction

In the SMECY project we want to use C source code as a portable intermediate representation
(IR) between tools from high-level tools down to lower-level tools because of its good trade-off
between expressiveness and readability, without compromising portability.

The targets envisioned in SMECY are heterogeneous multicore systems with shared memory
or not, with various hardware accelerators, such as ASIC, ASIP, FPGA, GPU, specialized vector
processors, partially reconfigurable accelerators...

Unfortunately, since it is undecidable to get high-level properties from such programs, we use
decorations to help tools to understand program behaviour and generate codes for some hardware
targets. We try to keep clear decorations, easy to understand, so that SMECY C (summarized as
SME-C in the following but also referred as IR-1 in the project) can also used as a programming
language.

A SMECY program contains various functions that may be executed on various processors,
accelerators, GPU... that may consume and produce data from different physical memory spaces.

Since we want to express also performance on given platforms, we keep the opportunity to
have platform-specific pragma and API or specialized intrinsic types and functions, for example
to express use of special hardware accelerator functions or operations.

The hardware specific pragma and intrinsics are to be defined between software and hardware
partners involved in various use cases. But it may not possible to address all the programming
models and platforms envisioned in the project.

The description of a reference compiler, smecc, is given in a companion report, “Some imple-
mentation details from the smecc compiler”. Several tools producing or consuming SME-C have
been developed in the SMECY project.

1.1 SMECY programming model

The programming model is based on C processes, with a virtual shared memory and threads à
la OpenMP. Since we may have quite asynchronous processes in a real application description

2

or at the back-end level in the execution model, we can cope indeed with different C processes
communicating with an API.

We add mapping information stating on which hardware part a function is to be placed and
run.

The programming model exposed in the following is based on an OpenMP SMP model be-
cause of its (rather) simple readability, elegance, old background and wide acceptance. We make
the hypothesis that a SMECY program is a correct OpenMP program that can be executed in
sequential with a C OpenMP-free compiler (just by ignoring OpenMP #pragma) and in parallel
on a SMP target (such an ARM or x86 machine) by using an OpenMP compiler with the same
semantics. Since we use C (by opposition to a DSL) as an internal representation, we choose this
behaviour to stick to standard behaviour as much as possible. This is known as the sequential
equivalence. Since we can cope different results for performance reasons from executing in parallel
non associative floating point operations, we deal with only weak sequential equivalence instead
of strong sequential equivalence.

Of course, this model is incompatible with a real hardware target envisioned in SMECY, so we
need to add hints in the code explaining memory dependencies at the function call levels. Since
it is quite difficult to describe general dependencies, we approximate memory dependencies with
rectangles (and more generally hyperparallelepipede in any dimension) that can be read, written
or both. We think these abstractions are good trade-offs between expressiveness (and what a
programmer can endure...) and hardware capabilities. Even if there is some similitude with HPF
(High Performance Fortran) or XMP pragmas, we do not deal with strides1.

With this information, the tools can guess the communication to generate between the different
functions and memory spaces to emulate the global OpenMP memory semantics.

The neat side effect is that we have the same global program executed on all the platforms
(sequential, real OpenMP and SMECY) with the same semantics and we can see the sequential
version as a functional simulator of the SMECY application and the real OpenMP version as a
parallelized quicker version of this simulator.

It is also easy to debug the application, but also all the SMECY tools used or developed in the
project.

To be able to address real hardware from the C level with special needs:

• to specify hardware register names;

• define input/output routines specifically but in portable way;

• define fixed point arithmetic computations with a given precision;

• specific data size;

• accumulator register (DSP...);

• different memory spaces that can be chosen specifically to optimize storage and speed (DSP,
hardware accelerators with scratch pad memory...);

• saturated arithmetic.

For all these we rely on the TR 18037 Embedded C standard, supported for example by ACE
tools.

To describe different processes communicating together in an asynchronous way, we do not have
anymore a sequential equivalence and then do not use pragma to express this. So we use a simple
communication, synchronization and threading API. Since we target embedded systems with a
light efficient implementation, we can rely on such standard API as the ones of the MultiCore
Association: MCAPI (communication), MRAPI (synchronization) and MTAPI (threading).

1Indeed, by using some higher dimensional arrays than the arrays used in the application, you can express
them... So may be we should allow to express them in the syntax?

3

As modern programs need a clear documentation, such as with Doxygen marking style pro-
viding meta information on different elements of the program, we can use this (hopefully correct)
information to help the compiling process itself.

Since tools are to be oriented for a specific target, taking into account various hardware and
compilation parameters that are to be kept orthogonally to application sources, those parameters
are kept aside in some description files that flow between tools. These files may be represented with
an XML syntax (using a SMECY naming space) or by even simpler format (JASON, YAML...).

1.2 SME-C Streaming Model

This section describes the state of the newly developed Streaming Annotation to C for use in
SMECY. This is a work in progress, so many imperfections still need to be fixed and many
extensions are both desireable and possible.

1.2.1 Background

In several of the SMECY applications, is appears to be a suitable parallel computation model to ex-
ploit application parallelism. This is the case in particular for two of the Use-Case-A applications,
the M5 protocol analyser and the OFDM application.

Streaming has the advantage that it fits well to parallelizing applications that process data
in a pipelined fashion, while there may still be strong data dependencies that require data to be
processed sequentially at specific points in the pipeline. This is opposed to a data-parallel model,
where such dependencies do not exist.

Streaming can exploit both a coarse-grained level of parallelism and parallelism at a fine-
grained level. At the fine-grained level, the overhead of passing data between processing nodes in
the pipeline must of course be minimized. For fine-grained parallelism, this may require hardware
support. To achieve good load balancing, it is important that the processing nodes have a com-
parable grain size. If one node required much more processing than the others, it becomes the
bottleneck and no parallelism can be exploited.

Streaming has the advantage of data locality. Data is passed around in the distributed point-
to-point network. Such networks can be implemented far more efficiently than, for example, a
shared memory connection between the processing nodes.

1.2.2 Goals

1. The SME-C streaming model is an annotation on top of a valid sequential program. Thus, the
program should also work when the streaming annotations are ignored. This eases program
development because it allows the validation of the program in an sequential environment.

2. In principle, a streaming program can also be written using OpenMP, but it requires the
explicit coding of the communication between nodes. In the SME-C streaming model, the
communication is derived from the program source and generated by the compiler. This is
very important for the parallel performance tuning of the application because it allows to
experiment with different load partitioning without having to re-program process communi-
cation.

3. The SME-C streaming model is mapped onto a few basic parallel machine primitives for
process creation and communication. The eases the task of retargeting to different target
architectures, with shared or distributed memory between the nodes.

1.2.3 Status as of June 2011

ACE has currently implemented a source-to-source compiler that accepts C programs with the
streaming annotation and produces a partitioned program with separate processes (nodes) for

4

each of the nodes in the stream. In addition, it implements the communication links between the
nodes.

The generated code includes library calls to implement the low-level tasks of process creation
and synchronization. This small library of about 5 calls is currently implemented on top of (shared
memory) POSIX pthreads. It is not hard to retarget this library to different underlying run-time
systems.

To be used, the streaming model requires a part of the target application to be rewritten into
a particular form, using a while loop and the SME-C stream annotations. Only this part needs
to be passed through the source-to-source compiler. Hence, large parts of the application remain
unmodified and do not need to be processed by the stream compiler.

Stream termination is currently not handled well. Stream termination has to be mapped from
a sequential to a distributed decision process and the design and implementation of that is still to
be done.

1.2.4 Future Extensions (not Implementation Related)

The highest priority for extension is to provide a mechanism for stream termination. The chal-
lenge here is to make the mechanism such that it still allows a natural programming style under
sequential program interpretation.

To facilitate additional parallel performance tuning, a mechanism must be design to allow node
replication. It would allow for a single node (that turns out to be a bottleneck) to be replicated
into multiple nodes that run on multiple processors. Obviously this complicates the generated
communication primitives.

Instead of generating communication primitives, the compiler can also limit itself to only
partitioning and generate a communication graph for subsequent processing by tools such as
SPEAR and BIPS in the SMECY project.

An extension is needed to pass (fixed) parameters and initial values into the streaming nodes
that do not turn into communication.

For TVN’s H264 application, certain compute intensive loops rely on array processing. Al-
though there is parallelism in these loops, they cannot be easily mapped to a fully data-parallel
implementation because of data dependencies. Given the nature of these data dependencies, it
seems to be possible to transform them into a stream-processing model.

1.3 Reference documents

Besides the SMECY documentation, the reader should be knowledgeable of some work of the To
update,
with
OpenMP
4, XMP,
C11,
C++11...,
Ope-
nACC,
OpenHMPP...

To
update,
with
OpenMP
4, XMP,
C11,
C++11...,
Ope-
nACC,
OpenHMPP...

ISO/IEC JTC1/SC22/WG14 committee on the C language standard:

• ISO/IEC 9899 - Programming languages - C (Technical Corrigendum 3 Cor. 3:2007(E))
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

• TR 18037: Embedded C http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.

pdf

• Future C1X standard http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf

and other standards such as

• MCA (MultiCore Association) API: MCAPI, MRAPI & MTAPI, www.multicore-association.
org

• HPF (High Performance Fortran) http://hpff.rice.edu/versions/hpf2

2 Intermediate representation use cases

Insert
here the
SMECY
use-cases
to develop
generic
use-cases

Insert
here the
SMECY
use-cases
to develop
generic
use-cases

5

2.1 Direct programming

A programmer can program her application directly in SME-C with OpenMP and SMECY-specific
pragma and API to target a SMECY platform.

It can be at rather high-level, by using only high-level pragma, or rather at a lower level, by
using different communicating processes with the API and even specialized API and pragma for
specific hardware.

A process written in C code with pragma and API can express a global host controlling process
of an application or a local program in a specialized processor. And we may have many of such
processes to express different producer and consumer Kahn processes interacting through a NoC
in an asynchronous way.

2.2 System high-level synthesis

A compiler can take a sequential plain C, MATLAB, Scilab, NumPy or another language code,
analyze and parallelize the code by adding automatically parallel and mapping pragma. This can
be seen as a high-level synthesis at system level.

A tool such as Par4All can do these kinds of transformation.

2.3 Hardware high-level synthesis

A compiler can take a program with SMECY pragma and compile any call with a mapping of a
given kind into some hardware configuration or program to be executed instead of the function
and an API call to use this hardware part from the host program.

Since the pragma are designed to be concretely compilable, such a tool should be easy to do
with a simple compilation framework, such as ROSE Compiler.

The SMECY API and intrinsics are chosen to be mapped quite straightforwardly to real
hardware functions by the back-end.

3 Exemples

3.1 Program with contiguous memory transfers

During C memory transfer, if we work on arrays with the last dimension taken as a whole, the
memory is contiguous and the programs often work even there are some aliasing such as using a
2D array zone as a linearized 1D vector.

The following program exposes this kind of code where some work sharing is done by contiguous
memory blocks.

1 /∗ To compi le t h i s program on Linux , t r y :

make CFLAGS=’− s t d=c99 −Wall ’ pragma example

To run :
6 . / pragma example ; echo $?

I t shou ld p r i n t 0 i f OK.

You can even compi le i t to run on mu l t i core SMP fo r f r e e wi th

11 make CFLAGS=’− s t d=c99 −fopenmp −Wall ’ pragma example

To v e r i f y t h e r e are r e a l l y some c lone () system c a l l s t h a t c r ea t e the threads :
s t r a c e −f . / pragma example ; echo $?

16 You can no t i c e t ha t the #pragma smecy are ignored (the p r o j e c t i s
on−going :−)) but t h a t the program produces a l r eady co r r e c t r e s u l t s in

6

s e q u e n t i a l e xecu t i on and p a r a l l e l OpenMP execu t i on .

Enjoy !
21

Remi . Barrere@tha lesgroup . com
Ronan . Keryel l@hpc−p r o j e c t . com
fo r ARTEMIS SMECY European p r o j e c t .

∗/
26

#include <s tdboo l . h>

/∗ f unc t i on Gen

31 Example o f o l d C89 array use−case where the s i z e i s unknown . Note t ha t
t h i s imp l i e s some nasty acces s l i n e a r i z a t i o n wi th array wi th more than
1 dimension .

∗/
void Gen(int ∗out , int s i z e) {

36 // Can be executed in p a r a l l e l
#pragma omp p a r a l l e l for

for (int i = 0 ; i < s i z e ; i++)
out [i] = 0 ;

}
41

/∗ f unc t i on Add

Nice C99 array wi th dynamic s i z e d e f i n i t i o n . Note t h i s imp l i e s having
46 array s i z e g i ven f i r s t

∗/
void Add(int s i z e , int in [s i z e] , int out [s i z e]) {

// Can be execu ted in p a r a l l e l
#pragma omp p a r a l l e l for

51 for (int i = 0 ; i < s i z e ; i++)
out [i] = in [i] + 1 ;

}

56 /∗ f unc t i on Test ∗/
bool Test (int s i z e , int in [s i z e]) {

bool ok = true ;
/∗ Can be executed in p a r a l l e l , ok i s i n i t i a l i z e d from g l o b a l va lue and

at loop e x i t ok i s the && opera t ion between a l l the l o c a l ok
61 i n s t ance s : ∗/

#pragma omp p a r a l l e l for r educt ion (&&:ok)
for (int i = 0 ; i < s i z e ; i++)

/∗ We cannot have t h i s s imp le code here :
i f (in [i] != 2)

66 e x i t (−1) ;
because a loop or a f onc t i on wi th e x i t () cannot be execu ted in p a r a l l e l .

Proof : t h e r e i s a p a r a l l e l e xecu t i on i n t e r l e a v i n g t ha t may execu te
some computat ions in some threads wi th a g r ea t e r i t h a t the one

71 execu t ing the e x i t () done on another thread . So the c a u s a l i t y i s
not r e spec t ed .

Anyway , in an heterogenous execut ion , j u s t t h ink about how to
implement the e x i t () opera t ing system c a l l from an

7

76 a c c e l e r a t o r . . . No hope . :−)

So use a reduc t i on in s t ead and re turn the s t a t u s f o r l a t e r
i n s p e c t i on :

∗/
81 ok &= (in [i] == 2) ;

// Return f a l s e i f a t l e a s t one in [i] i s not equa l to 2 :
return ok ;

}
86

/∗ main ∗/
int main (int argc , char∗ argv []) {

int tab [6] [2 0 0] ;
91 // Gen i s mapped on GPP 0 , i t produced (out) an array wr i t t en to arg 1 :

#pragma smecy map(GPP, 0) arg (1 , [6] [2 0 0] , out)
/∗ Note the r e i s an array l i n e a r i z a t i o n here , s ince we g i v e a 2D array

to Gen() t ha t uses i t . This i s bad programming s t y l e , but i t i s j u s t
to show i t can be handled in the model :−) ∗/

96 Gen ((int ∗) tab , 200∗6) ;

// Launch d i f f e r e n t t h i n g s in p a r a l l e l :
#pragma omp p a r a l l e l s e c t i o n s
{

101 // Do one th ing in p a r a l l e l . . .
#pragma omp s e c t i o n

{
/∗ Map t h i s ”Add” c a l l to PE 0 , arg 2 i s communicated as input as an

array o f ” i n t [3] [2 0 0] ” , and a f t e r execu t i on arg 3 i s
106 communicated out as an array o f ” i n t [3] [2 0 0] ”

Note the a l i a s i n g o f the 2 l a s t arguments . Jus t to show we can
handle i t . : ∗/

#pragma smecy map(PE, 0) arg (2 , [3] [2 0 0] , in) arg (3 , [3] [2 0 0] , out)
111 Add(200∗3 , (int ∗) tab , (int ∗) tab) ;

}
// . . . wi th another t h ing

#pragma omp s e c t i o n
{

116 /∗ Map t h i s ”Add” c a l l to PE 1 , arg 2 i s communicated as input as an
array o f ” i n t [3] [2 0 0] ” from address tab [3] [0] , t h a t i s the
second h a l f o f tab , and a f t e r execu t i on arg 3 i s communicated out
as an array o f ” i n t [3] [2 0 0] ” , t h a t i s the second h a l f o f tab

121 Note the a l i a s i n g o f the 2 l a s t arguments . Jus t to show we can
handle i t . : ∗/

#pragma smecy map(PE, 1) arg (2 , [3] [2 0 0] , in) \
arg (3 , [3] [2 0 0] , out)

Add(200∗3 , &tab [3] [0] , &tab [3] [0]) ;
126 }

}

// Launch d i f f e r e n t t h i n g s in p a r a l l e l :
#pragma omp p a r a l l e l s e c t i o n s

131 {
#pragma omp s e c t i o n

{

8

#pragma smecy map(PE, 2) arg (2 , [2] [2 0 0] , in) arg (3 , [2] [2 0 0] , out)
Add(200∗2 , (int ∗) tab , (int ∗) tab) ;

136 }
#pragma omp s e c t i o n

{
#pragma smecy map(PE, 3) arg (2 , [2] [2 0 0] , in) arg (3 , [2] [2 0 0] , out)

Add(200∗2 , &tab [2] [0] , &tab [2] [0]) ;
141 }

#pragma omp s e c t i o n
{

#pragma smecy map(PE, 4) arg (2 , [2] [2 0 0] , in) arg (3 , [2] [2 0 0] , out)
Add(200∗2 , &tab [4] [0] , &tab [4] [0]) ;

146 }
}
// An example where arg 2 i s j u s t used as a whole i m p l i c i t l y :

#pragma smecy map(GPP, 0) arg (2 , in)
bool r e s u l t = Test (200∗6 , (int ∗) tab) ;

151 // Return non 0 i f the computation went wrong :
return ! r e s u l t ;

}

3.2 Program with non-contiguous memory transfers

In the following example, we apply different computations on square pieces of the image, that do
not have contiguous representation in memory. That is why we need to express restrictions on the
use of the whole array.

/∗ To compi le t h i s program on Linux , t r y :
2

make CFLAGS=’− s t d=c99 −Wall ’ example 2D

To run :
./ example 2D ; echo $?

7 I t shou ld p r i n t 0 i f OK.

You can even compi le i t to run on mu l t i core SMP fo r f r e e wi th

make CFLAGS=’− s t d=c99 −fopenmp −Wall ’ example 2D
12

To v e r i f y t h e r e are r e a l l y some c lone () system c a l l s t h a t c r ea t e the threads :
s t r a c e −f . / example 2D ; echo $?

You can no t i c e t ha t the #pragma smecy are ignored (the p r o j e c t i s
17 on−going :−)) but t h a t the program produces a l r eady co r r e c t r e s u l t s in

s e q u en t i a l e xecu t i on and p a r a l l e l OpenMP execu t i on .

Enjoy !

22 Ronan . Keryel l@hpc−p r o j e c t . com
fo r ARTEMIS SMECY European p r o j e c t .

∗/

#include <s t d l i b . h>
27 #include ” example he lper . h”

// Problem s i z e
enum { WIDTH = 500 , HEIGHT = 200 } ;

9

32

/∗ The main hos t program c on t r o l l i n g and r ep r e s en t i n g the whole
a p p l i c a t i o n ∗/

int main (int argc , char∗ argv []) {
37 int image [HEIGHT] [WIDTH] ;

unsigned char output [HEIGHT] [WIDTH] ;

// I n i t i a l i z e wi th some va l u e s
i n i t image (WIDTH, HEIGHT, image) ;

42
#pragma omp p a r a l l e l s e c t i o n s
{

// On one proces sor
// We rewr i t e a sma l l par t o f image :

47 #pragma smecy map(PE, 0) arg (3 , inout , [HEIGHT] [WIDTH] \
/ [HEIGHT/3 :HEIGHT/3 + HEIGHT/2 − 1] \
[WIDTH/8 :WIDTH/8 + HEIGHT/2 − 1])

square symmetry (WIDTH, HEIGHT, image , HEIGHT/2 , WIDTH/8 , HEIGHT/3) ;

52 // On another proces sor
#pragma omp s e c t i o n

// Here l e t the compi ler to guess the array s i z e
#pragma smecy map(PE, 1) arg (3 , inout , / [HEIGHT/4 :HEIGHT/4 + HEIGHT/2 − 1] \

[3∗WIDTH/8:3∗WIDTH/8 + HEIGHT/2 − 1])
57 square symmetry (WIDTH, HEIGHT, image , HEIGHT/2 , 3∗WIDTH/4 , HEIGHT/4) ;

// On another proces sor
#pragma omp s e c t i o n

// Here l e t the compi ler to guess the array s i z e
62 #pragma smecy map(PE, 1) arg (3 , inout , / [2∗HEIGHT/5:2∗HEIGHT/5 + HEIGHT/2 − 1] \

[WIDTH/2 :WIDTH/2 + HEIGHT/2 − 1])
square symmetry (WIDTH, HEIGHT, image , HEIGHT/2 , WIDTH/2 , 2∗HEIGHT/5) ;

}
// Here the r e i s a synchron i za t i on because o f the p a r a l l e l par t end

67
// Since the r e
no rma l i z e t o cha r (WIDTH, HEIGHT, image , output) ;

write pgm image (”2D example−output . pgm” , WIDTH, HEIGHT, output) ;
72

return EXIT SUCCESS ;
}

3.3 Pipelined example

The example shows a produced/consumer program. At every communication step, a full array of
128 integers is passed from the ’Producer’ to the ’Consumer’. The streaming compiler finds out
the sizes of the communication buffers from the program.

3.4 Remapping example

Some information can be in a given layout but needed in another layout to be used by a specific
hardware accelerator.

#include <s t d l i b . h>
2 #include ” example he lper . h”

10

1 #include <s t d l i b . h>
#include <s t d i o . h>

#define bu f f e r l e n g t h 128
typedef int data bu f f [b u f f e r l e n g t h] ;

6
/∗ Produce a random bu f f e r

@param [out] d a t a b u f f e r i s an array i n i t i a l i z e d wi th random numbers
∗/

11 void Produce (da ta bu f f d a t a bu f f e r) {
for (int i = 0 ; i < bu f f e r l e n g t h ; i++)

/∗ Note t ha t rand () i s not thread−s a f e but i t i s OK fo r t h i s
example ∗/

da t a bu f f e r [i] = rand () ;
16 }

/∗ Compute the average va lue o f an array and d i s p l a y i t

@param [in] d a t a b u f f e r i s the array to ana lyze
21 ∗/

void Consume(da ta bu f f d a t a bu f f e r) {
double average = 0 ;
for (int i = 0 ; i < bu f f e r l e n g t h ; i++)

/∗ Note t ha t rand () i s not thread−s a f e but i t i s OK fo r t h i s
26 example ∗/

average += da ta bu f f e r [i] ;
// Normalize :
average /= RANDMAX;
average /= bu f f e r l e n g t h ;

31 p r i n t f (”Average = %f \n” , average) ;
}

int main () {
36 da ta bu f f d a t a bu f f e r ;

/∗ This whi le−l oop i s indeed to be execu ted in a p i p e l i n e d way accord ing
to the f o l l ow i n g pragma : ∗/

#pragma smecy stream loop
while (1) {

41 // This pragma i s op t i ona l indeed :
#pragma smecy s tage

Produce (da t a bu f f e r) ;
#pragma smecy s tage

Consume(da t a bu f f e r) ;
46 }

return 0 ;
}

Figure 1: Example of pipelined streamed loop.

11

// Problem s i z e
enum { WIDTH = 500 , HEIGHT = 200 , LINE SIZE = 100 } ;

7 /∗ Apply some p i x e l va lue in v e r s i on in a 1D array
∗/

void
i n v e r t v e c t o r (int l i n e s i z e ,

int i n p u t l i n e [l i n e s i z e] ,
12 int ou tpu t l i n e [l i n e s i z e]) {

for (int i = 0 ; i < l i n e s i z e ; i++)
ou tpu t l i n e [i] = 500 − i n p u t l i n e [i] ;

}

17
/∗ The main hos t program c on t r o l l i n g and r ep r e s en t i n g the whole

a p p l i c a t i o n ∗/
int main (int argc , char∗ argv []) {

int image [HEIGHT] [WIDTH] ;
22 unsigned char output [HEIGHT] [WIDTH] ;

// I n i t i a l i z e wi th some va l u e s
i n i t image (WIDTH, HEIGHT, image) ;

27 // Draw 70 ho r i z on t a l l i n e s and map opera t ion on 8 PEs :
#pragma omp p a r a l l e l for num threads (8)

for (int proc = 0 ; proc < 70 ; proc++)
// Each i t e r a t i o n i s on a d i f f e r e n t PE in p a r a l l e l :

#pragma smecy map(PE, proc & 7) \
32 arg (2 , in , [1] [LINE SIZE]) \

arg (3 , out , [1] [LINE SIZE])
// Inve r t an ho r i z on t a l l i n e :
i n v e r t v e c t o r (LINE SIZE ,

&image [HEIGHT − 20 − proc] [WIDTH/2 + 2∗ proc] ,
37 &image [HEIGHT − 20 − proc] [WIDTH/2 + 2∗ proc]) ;

/∗ Here we guess we have 5 hardware a c c e l e r a t o r s and we launch
opera t i ons on them : ∗/

#pragma omp p a r a l l e l for num threads (5)
42 for (int proc = 0 ; proc < 5 ; proc++) {

/∗ This i s need to expre s s the f a c t t h a t our a c c e l e r a t o r on ly accep t
cont inuous data but we want app ly them on non cont i guous data in
the array ∗/

int i n p u t l i n e [LINE SIZE] ;
47 int ou tpu t l i n e [LINE SIZE] ;

/∗ We need to remap data in the good shape . The compi ler shou ld use
the remapping in format ion to genera te DMA t r an s f e r f o r example and
remove i n p u t l i n e array ∗/

SMECY remap int2D to int1D (HEIGHT, WIDTH, HEIGHT/3 , 30 + 20∗proc ,
52 LINE SIZE , 1 , image ,

LINE SIZE , i n pu t l i n e) ;
// Each i t e r a t i o n i s on a d i f f e r e n t PE in p a r a l l e l :

#pragma smecy map(PE, proc) arg (2 , in , [LINE SIZE]) arg (3 , out , [LINE SIZE])
i n v e r t v e c t o r (LINE SIZE , i npu t l i n e , ou tpu t l i n e) ;

57 SMECY remap int1D to int2D (LINE SIZE , output l i n e ,
HEIGHT, WIDTH, HEIGHT/3 , 30 + 20∗proc ,
LINE SIZE , 1 , image) ;

}

12

62 // Convert i n t image to char image :
no rma l i z e t o cha r (WIDTH, HEIGHT, image , output) ;

write pgm image (” remapping example−output . pgm” , WIDTH, HEIGHT, output) ;

67 return EXIT SUCCESS ;
}

4 Description of high level process structure

Here should be described the metadata on the process organization.
It should
be able to
describe
process
instance,
intercon-
nection...

It should
be able to
describe
process
instance,
intercon-
nection...

5 SMECY embedded C language

We take as input C99 (ISO/IEC 9899:2007) language with extensions for embedded systems (TR
18037).

Refer to these documents for more information.
comment
the follow-
ing

comment
the follow-
ing__thread

Thread-Local Storage

_Thread_local

Doc. No.: WG14/N1364

Date: 2008-11-11

Reply to: Clark Nelson

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1364.htm

C++

ISO/IEC JTC1 SC22 WG21 N2659 = 08-0169 - 2008-06-11 proposal

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2659.htm

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1351.pdf

WG14 N1351

C Language support for multiprocessor application

environments.

Walter Banks

Byte Craft Limited

Canada

February 2009

ISO/IEC JTC1 SC22 WG14 N1275

Date: 2007-10-20

Reference number of document:

ISO/IEC TR 18037

Committee identification: ISO/IEC JTC1 SC22 WG14

SC22 Secretariat: ANSI

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1275.pdf

13

WG14 N1386

Additions to ISO/IEC TR 18037 to support named execution

space.

Walter Banks

Byte Craft Limited

Canada

April 2009

Named execution addition to IEC/ISO 18037

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1386.pdf

6 Description of the SMECY directives

The generic format of SMECY code decorations are language dependent, because if here we
describe a SMECY IR implementation based on C, it is indeed more general.

• In C/C++:

#pragma smecy clause[[,]clause]... newline

We can use \ at the end of line for continuation information.

• In Fortran:

!$smecy clause[[,]clause]... newline

Use & at the end of line for continuation information.

• In other languages: use #pragma equivalent, if not available, use comments à la Fortran. For
example in Python:

#$smecy clause[[,]clause]... newline

Use also & at the end of line for continuation information

In implementations that support a preprocessor, the _SMECY macro name is defined to have the
decimal value yyyymm where yyyy and mm are the year and month designations of the version of
the SMECY API that the implementation supports. If this macro is the subject of a #define or
a #undef preprocessing directive, the behavior is unspecified.

6.1 OpenMP support

SMECY is based on OpenMP 3.1. Since a SMECY platform is made at least form a (SMP)
control processor, any OpenMP compliant program can run on it anyway. The SMECY tools can
use more or less information from available OpenMP decorations available in the code.

The on-coming version 4 dealing more with SIMD instruction and heterogeneous computing
seems promising as a starting point for a next version of SME-C.

6.2 Mapping on hardware

The mapping of a function call on a specific piece of hardware can be specified with

#pragma smecy map(hardware[, unit][, unit]...)

some_function_call(...);

• hardware is a symbol representing a hardware component of a given target such as CPU,
GPP, GPU, PE... They are target specific.

14

• unit are optional multidimensional instance number for a specific hardware part. This is
typically an integer starting a 0 or for ST THORM 2 integers, the first one is the cluster
number and the second one is the processor element number inside the cluster. This hardware
number can be an expression of the environment to be able to have a loop managing different
accelerators.

We can add an if(scalar-expression) to predicate hardware launching according some run-
time expression to choose between hardware or local software execution, as in OpenMP with the
same syntax. The idea is to be able to do a software execution if the data to process is too small
compared to the latency of an hardware accelerator.

Recursion is not supported on hardware-mapped functions. If there are functions called from
hardware-mapped functions, they will be automatically inlined (so no recursion allowed in them
either). If a function is mapped to a more programmable hardware (GPP), recursions in these
called functions should be allowed.

By default, call to hardware accelerators are synchronous, so you may launch the call into an
OpenMP thread or into another MCA API process. But simpler way is to use the async keyword
to launch in an asynchronous way, such as:

#pragma smecy map(...) async

But the it may be useful to way later for the production of an accelerator to be ready. This is
done with the wait pragma such as in:

#pragma smecy wait(PE,2)

6.3 Producer/consumer information

To generate hardware communications where there is only a function call, the compiler need to
figure out what is the memory zone used to execute the function and then what memory zone
in written by the function and that will be used later in the program2. From these information,
copy-in and copy-out operations can be generated.

6.3.1 Function arguments

#pragma smecy arg(arg_id , arg_clause[, arg_clause]...)

some_function_call(...);

Direction directive defines how the data flows between the caller and the function:

in: the argument is used by the function;

out: the argument is used by the function;

inout: the argument is used and produced by the function;

unused: the argument is not used and produced by the function.

Argument layout specifies how the argument is used in the function with:

• an optional array size descriptor such as [n][m] expressing that the data is used
from the callee point of view as such an array starting at the address given in parameter.
If not specified, all the caller argument is used;

• an optional /array range descriptor restriction such as /[n:m][2][3:7] expressing
that the data is used from the callee point of view as an array with only this element
ranges used. If not specified, all the array is used according to its size specified or
not. If only some ranges are lacking, all the matching dimension is used. For example
/[4][] matches the column 4 of an array.

2If a function produces something not used later, it is useless to get it back.

15

The more precise this description is and the less data transfers occur.

If the argument usage is independent from the call site they can be specified only at the function
definition level instead of at each call site..

6.3.2 Global variables

Right now we do not deal with sharing information through global variables, because it is more
difficult to track. Only function parameters are used to exchange information.

But we can imagine to map global variables with this clause:

#pragma smecy global_var(var, arg_clause[, arg_clause]...)

some_function_call(...);

6.4 Stream programming

It is possible to stream a while loop in several pipeline stages that execute in parallel and pass
information between stages/

The two pragmas used here are:

#pragma smecy stream loop: this indicated the following while loop must be turned into a
stream of processes;

#pragma smecy stage: this acts as a separator between groups of statements and define the
boundary of pipeline stages. Only data passing over these separators is turned into commu-
nication.3 Note that the first stage pragma can be eluded since the begin of the loop body
define a stage up to the next stage pragma.

You can refer to example shown on figure 1.

6.5 Labelling statement

Since ACE mentioned an interest to name part of a program from other external tools, such as to
do some fine mapping, a labeling pragma has been added to name4 statements:

#pragma smecy label(name)

any_statement ;

6.6 Remapping specification

To finishTo finish
Since we always want a sequential equivalence, that means that the sequential code representing

the computation on an accelerator really consume The easy
HPF

6.7 Hardware specific pragma

To be
defined
in collab-
oration
with the
various
hardware
suppliers
of the
project
(ST
P2012/STHORM,
EdkD-
SP/ASVP...).

To be
defined
in collab-
oration
with the
various
hardware
suppliers
of the
project
(ST
P2012/STHORM,
EdkD-
SP/ASVP...).

3It used to be #pragma smecy stream node(n) as an instruction to define both a stage node and a way to name
it for another later use by ace. But after København meeting, it appears it is better to use another way to label
things only when needed. See § 6.5.

4Should it be an atom, a string, a number?

16

7 SMECY high-level APIs

7.1 OpenMP

Since we support OpenMP pragma, we also support OpenMP API that allows for example:

• getting/setting the number of threads;

• getting the number of available processors on the current domain;

• manipulating locks.

7.2 MultiCore Association APIs

Since in this project we deal with communicating processes, asynchronous communications, syn-
chronization, etc. we need an API to be able to express them from inside the processes. We
rely on a standard API instead of reinventing on again. The MultiCore Association designed some
APIs specially targeted at low resource embedded systems, so we rely on the MCAPI, MTAPI and
MRAPI for low memory footprint light-weight communications, threading and synchronization.

There is a free implementation based on POSIX so we can have a working version on any decent
operating system for testing the SME-C programs. Since this is a reference implementation based
on Linux pthreads, it can also be used as an example to port to the various available hardware.

During the SMECY project, ST & CEA has phased out NPL, their own library to program
the STHORM, because it was equivalent to the MCA standard API. So for a message passing
interface API, the MCA APIs have to be used on this platform.

Right now there are 3 different specifications we can use in the project.

7.3 Multicore Communication API (MCAPI)

This is the main and first produced API by the MCA5 dealing with communications between
processes.

This standard define basically 3 kinds of communication channels:

• messages: connection-less datagrams, similar to UDP datagrams in IP networking;

• packet channels: connection-oriented, unidirectional, FIFO packet streams;

• scalar channel: connection-oriented, single-word, unidirectional, FIFO scalar streams.

A communication entity in MCAPI is a node, that can be gathered in some domains to add
hierarchy, and can represent a process on a processor or a hardware accelerator for example.

Please refer to the “Multicore Communications API (MCAPI) Specification V2.015” document
for more information.

7.3.1 MTAPI

To com-
plete
To com-
plete

7.3.2 MRAPI

To com-
plete
To com-
plete5Note that this MCAPI should not be confused with the MCA APIs, that are the APIs in general designed by

the MultiCore Association, even if the WWW site and the documents of this association are not always very clear...
This was confusing during the København meeting.

17

7.4 NPL API

NPL is the API defined to program ST P2012/STHORM in a native way. Since it is rather at
the same level of MCAPI/MRAPI/MTAPI, it should be easy to implement one above the other.
Since the MCA APIs are standard, we thing that it is commercially interesting to provide a MCA
APIs over NPL or other to widen P2012/STHORM usage.

Indeed, in 10/2011 this API seems to have been phased out by ST & CEA. So this part is
kept for it history interest and MCAPI is used in the SMECY project as a lower intermediate
representation, the IR-2.

7.5 EdkDSP/ASVP API

Define
here what
is use-
ful in the
project.

Define
here what
is use-
ful in the
project.

7.6 OpenCL

Since ST P2012/STHORM can be programmed in OpenCL which is also a programming API, a C
process can use OpenCL orthogonally with other API. A kernel launching is done by defining the
kernel source, the memory zone to use and to transfer and the different parameters of the kernel.

Refer to OpenCL documentation for more information.

8 Some design patterns for STHORM SME-C

In this section we provide some typical use-cases for the ST STHORM platform to illustrate how
SME-C can be used to program some common application patterns.

8.1 Same computation on all the PEs

#define N 1000
2 #define NB CLUSTERS 4

#define NB PES 16
#define MIN(x , y) ((x) < (y) ? x : y)

#include <s t d i o . h>
7

/∗ I n i t i a l i z e an array between 2 g iven l i n e s ∗/
void i n i t a r r a y (int a [N] [N] , int begin , int end) {

for (int i = begin ; i < end ; i++)
for (int j = 0 ; j < N; j++)

12 a [i] [j] = 2∗ i + 3∗ j ;
}

int main () {
int a [N] [N] ;

17
int s l i c e = N/(NB CLUSTERS∗NB PES) ;
/∗ Launch enough OpenMP thread to con t r o l a l l t he f a b r i c :

Assume tha t the runtime a l l ows enough threads wi th nes ted
22 p a r a l l e l i sm ∗/

#pragma omp p a r a l l e l for num threads (NB CLUSTERS)
for (int c l u s t e r = 0 ; c l u s t e r < NB CLUSTERS; c l u s t e r++)

#pragma omp p a r a l l e l for num threads (NB PES)
for (int pe = 0 ; pe < NB PES ; pe++) {

27 /∗ So now the i t e r a t i o n s shou ld be d i s t r i b u t e d wi th 1
i t e r a t i o n / thread , on NB CLUSTERS∗NB PES threads .

18

Di s t r i b u t e the i n i t i a l i z a t i o n on a l l the f a b r i c : ∗/
int g l oba l p e = c l u s t e r ∗NB PES + pe ;

32 int begin = s l i c e ∗ g l oba l p e ;
int end = MIN(N, s l i c e ∗(g l oba l p e + 1)) ;

#pragma smecy map(STHORM, c l u s t e r , pe)
#pragma smecy arg (a , out , / [begin : end − 1] [])

i n i t a r r a y (a , begin , end) ;
37 }

p r i n t f (”a [2 7] [4 2] = %d\n” , a [2 7] [4 2]) ;

return 0 ;
42 }

8.2 Same computation on all the PEs of a cluster

#define N 1000
#define NB CLUSTERS 4

3 #define NB PES 16
#define MIN(x , y) ((x) < (y) ? x : y)

#include <s t d i o . h>

8 /∗ I n i t i a l i z e an array between 2 g iven l i n e s ∗/
void i n i t a r r a y (int a [N] [N]) {
#pragma omp p a r a l l e l for

for (int i = 0 ; i < N; i++)
for (int j = 0 ; j < N; j++)

13 a [i] [j] = 2∗ i + 3∗ j ;
}

void mult (int a [N] [N] , int begin , int end , int f a c t) {
for (int i = begin ; i < end ; i++)

18 for (int j = 0 ; j < N; j++)
a [i] [j] ∗= fa c t ;

}

// Compute a d i s t r i b u t i o n by s t r i p e on the PEs :
23 #define ITER BEGIN N/(NB CLUSTERS∗NB PES)∗ (c l u s t e r ∗NB PES + pe)

#define ITER END MIN(N, N/(NB CLUSTERS∗NB PES)∗ (c l u s t e r ∗NB PES + pe + 1))

int main () {
int a [N] [N] ;

28
// I n i t i a l i z e in p a r a l l e l on the Cortex A9 :
i n i t a r r a y (a) ;

/∗ Then do some computat ions wi th the f a b r i c
33

Launch enough OpenMP thread on the Cortex A9 to con t r o l a l l t he
c l u s t e r s ∗/

#pragma omp p a r a l l e l for num threads (NB CLUSTERS)
for (int c l u s t e r = 0 ; c l u s t e r < NB CLUSTERS; c l u s t e r++)

38 switch (c l u s t e r) {
case 0 :

// The c l u s t e r 0 :
#pragma omp p a r a l l e l for num threads (NB PES)

for (int pe = 0 ; pe < NB PES ; pe++)

19

43 #pragma smecy map(STHORM, c l u s t e r , pe)
#pragma smecy arg (a , inout , / [begin : end − 1] [])

mult (a , ITER BEGIN, ITER END, −1);
break ;

48 case 1 :
// The c l u s t e r 1 :

#pragma omp p a r a l l e l for num threads (NB PES)
for (int pe = 0 ; pe < NB PES ; pe++)

#pragma smecy map(STHORM, c l u s t e r , pe)
53 #pragma smecy arg (a , inout , / [begin : end − 1] [])

mult (a , ITER BEGIN, ITER END, 3) ;
break ;

case 2 :
58 // The c l u s t e r 2 :

#pragma omp p a r a l l e l for num threads (NB PES)
for (int pe = 0 ; pe < NB PES ; pe++)

#pragma smecy map(STHORM, c l u s t e r , pe)
#pragma smecy arg (a , inout , / [begin : end − 1] [])

63 mult (a , ITER BEGIN, ITER END, −7);
break ;

case 3 :
// The c l u s t e r 3 :

68 #pragma omp p a r a l l e l for num threads (NB PES)
for (int pe = 0 ; pe < NB PES ; pe++)

#pragma smecy map(STHORM, c l u s t e r , pe)
#pragma smecy arg (a , inout , / [begin : end − 1] [])

mult (a , ITER BEGIN, ITER END, 9) ;
73 break ;

}

p r i n t f (”a [2 7] [4 2] = %d\n” , a [2 7] [4 2]) ;

78 return 0 ;
}

8.3 Stream computation through the PEs of a cluster

1 #define NB CLUSTERS 4
#define NB PES 16

#include <s t d i o . h>

6 /∗ Compute a po lynomia l wi th HÃ¶rner method in a p i p e l i n e d way as a stream

(((ax + b) x + c) x + d) x + e
∗/

11

/∗ A s tage o f a s y s t o l i c HÃ¶rner po lynomia l computation ∗/
void s tage (int ∗poly , int ∗x , int ∗ input ,

int ∗pass through , int ∗output) {
// Compute one HÃ¶rner f a c t o r y = ax + b

16 ∗output = ∗ input ∗ ∗x + ∗poly ;
// Propagate x down the stream :
∗ pass through = ∗x ;

20

}

21
void output (int ∗v) {

// In r e a l code the r e i s no such IO a v a i l a b l e on STHORM. . .
p r i n t f (”Polynomial = %d\n” , ∗v) ;

}
26

int main () {
/∗ Values where to compite the po lynomia l ∗/
int x [] = { 0 , 1 , −1, 2 , 4 , 5 , 10 } ;

31 /∗ The po lynomia l i s −4xˆ3 + xˆ2 + 2x + 3 : ∗/
int poly [] = {0 , −4, 1 , 2 , 3} ;
int v [] = {0 , 0 , 0 , 0 , 0 , 0} ;
/∗ To propagate the x unchanged through the p i p e l i n e : ∗/
int path through [] = {0 , 0 , 0 , 0 , 0} ;

36
#pragma smecy stream loop

for (int i = 0 ; i < s izeof (x)/ s izeof (x [0]) ; i++) {
/∗ The f o l l ow i n g cou ld be done wi th macros ∗/

#pragma smecy map(STHORM, 0 , 0) arg (1 , in) arg (2 , in) arg (3 , in) \
41 arg (4 , out) arg (5 , out)

s tage (&poly [0] , &x [i] , &v [0] , &path through [0] , &v [1]) ;
#pragma smecy s tage map(STHORM, 0 , 1) arg (1 , in) arg (2 , in) arg (3 , in) \

arg (4 , out) arg (5 , out)
s tage (&poly [1] , &path through [0] , &v [1] , &path through [1] , &v [2]) ;

46 #pragma smecy s tage map(STHORM, 0 , 2) arg (1 , in) arg (2 , in) arg (3 , in) \
arg (4 , out) arg (5 , out)

s tage (&poly [2] , &path through [1] , &v [2] , &path through [2] , &v [3]) ;
#pragma smecy s tage map(STHORM, 0 , 3) arg (1 , in) arg (2 , in) arg (3 , in) \

arg (4 , out) arg (5 , out)
51 s tage (&poly [3] , &path through [2] , &v [3] , &path through [3] , &v [4]) ;

#pragma smecy s tage map(STHORM, 0 , 4) arg (1 , in) arg (2 , in) arg (3 , in) \
arg (4 , out) arg (5 , out)

s tage (&poly [4] , &path through [3] , &v [4] , &path through [4] , &v [5]) ;
#pragma smecy s tage map(STHORM, 0 , 5) arg (1 , in) arg (2 , in) arg (3 , in) \

56 arg (4 , out) arg (5 , out)
output(&v [5]) ;

}
return 0 ;

}

8.4 Systolic computation with the PEs of a cluster

#define N 1000
#define NB CLUSTERS 4
#define MIN(x , y) ((x) < (y) ? x : y)

5 #include <s t d i o . h>

/∗ Compute a po lynomia l wi th HÃ¶rner method in a p i p e l i n e d way wi th a
s y s t o l i c l i n e o f PE

10 (((ax + b) x + c) x + d) x + e

This i s a s p a t i a l d eve l opp ing o f the streaming example in
s t r eam c lus t e r PEs . c . So read s t r eam c lus t e r PEs . c f i r s t f o r a g e n t l e
i n t r oduc t i on .

21

15 ∗/

/∗ Values where to compite the po lynomia l ∗/
int x [] = { 0 , 1 , −1, 2 , 4 , 5 , 10 } ;

20 /∗ The po lynomia l i s −4xˆ3 + xˆ2 + 2x + 3 : ∗/
int poly [] = {0 , −4, 1 , 2 , 3} ;

/∗ A s tage o f a s y s t o l i c HÃ¶rner po lynomia l computation ∗/
void s tage (int ∗poly , int ∗x , int ∗ input ,

25 int ∗pass through , int ∗output) {
// Compute one HÃ¶rner f a c t o r y = ax + b
∗output = ∗ input ∗ ∗x + ∗poly ;
// Propagate x down the stream :
∗ pass through = ∗x ;

30 }

void output (int ∗v , int t , int pe) {
// In r e a l code the r e i s no such IO a v a i l a b l e on STHORM. . .

35 p r i n t f (”Polynomial at t=%d with pe %d = %d\n” , t , pe , ∗v) ;
}

int main () {
40 /∗ Since the 2 f o l l ow i n g arrays are read and wr i t t en at the same time to

move data through the p i p e l i n e , inc r ea se the dimension to s t o r e
curren t t and next t+1 va l u e s . Put the time dimension f i r s t to l im i t
cache l i n e f a l s e shar ing : ∗/

int v [2] [s izeof (poly)/ s izeof (poly [0]) + 1] ;
45 /∗ To propagate the x unchanged through the p i p e l i n e : ∗/

int path through [2] [s izeof (poly)/ s izeof (poly [0])] ;

// Launch the thread only once
#pragma omp p a r a l l e l num threads (s izeof (poly)/ s izeof (poly [0]) + 1)

50 /∗ The time loop .
I t t a k e s l en (x)+ len (po ly) c y c l e s to go through the p i p e l i n e ∗/

for (int t = 0 ;
t < s izeof (x)/ s izeof (x [0]) + s izeof (poly)/ s izeof (poly [0]) ;
t++) {

55 /∗ Toggle between 0 and 1 in phase opo s i t i on : ∗/
int cur rent = t & 1 ;
int next = ˜ t & 1 ;

/∗ S p a t i a l l y spread the computation on the PEs , +1 i s f o r f o r a PE doing the
60 output : ∗/

#pragma omp for schedu le (static , 1)
for (int pe = 0 ; pe < s izeof (poly)/ s izeof (poly [0]) + 1 ; pe++) {

i f (pe == 0) {
// Spe c i a l case f o r the f i r s t s t a g e which taps in the input

65 i f (t < s izeof (x)/ s izeof (x [0])) {
v [cur rent] [0] = 0 ;
// Only run when the r e are some data to read

#pragma smecy map(STHORM, 0 , 0) arg (1 , in) arg (2 , in) arg (3 , in) \
arg (4 , out) arg (5 , out)

70 s tage (&poly [0] , &x [t] , &v [cur rent] [0] ,
&path through [next] [0] , &v [next] [1]) ;

}

22

}
else i f (pe == s izeof (poly)/ s izeof (poly [0])) {

75 /∗ The PE doing the output i s the l a s t s t a g e : i t runs on ly a f t e r
the data go t time to pass through the whole p i p e l i n e ∗/

i f (t >= pe)
// The output i s done on the host , so no #pragma map here
output(&v [cur rent] [5] , t , pe) ;

80 }
else {

// The normal computation p i p e l i n e s tage , wi th the genera l s chedu l e
i f (t >= pe && t < pe + s izeof (x)/ s izeof (x [0])) {

#pragma smecy s tage map(STHORM, 0 , pe) arg (1 , in) arg (2 , in) arg (3 , in) \
85 arg (4 , out) arg (5 , out)

s tage (&poly [pe] , &path through [cur rent] [pe − 1] , &v [cur rent] [pe] ,
&path through [next] [pe] , &v [next] [pe + 1]) ;

}
}

90 // There i s an imp l i c i t b a r r i e r here
}

}
return 0 ;

}

8.5 Round robin computation on the clusters

1 #define N 10
#define NB CLUSTERS 4
#define NB PES 16
#define MIN(x , y) ((x) < (y) ? x : y)

6 #include <s t d i o . h>

int g e t t i c k e t () {
stat ic int t = 0 ;

11 int t i c k e t ;
// In case t h i s i s c a l l e d from s e v e r a l t h reads . Avoid a f l u s h , anyway

#pragma omp atomic capture
t i c k e t = t++;
return t i c k e t ;

16 }

int get data (t) {
// s l e e p (t &1);

21 /∗ In a r e a l app l i c a t i on , g e t a radar s i g n a l time s l i c e f o r example ∗/
return t ∗2 ;

}

26 int compute (int d , int c l u s t e r , int pe) {
/∗ In a r e a l app l i c a t i on , do a computation on the data ∗/
return d∗ c l u s t e r + pe ;

}

31

int main () {
/∗ Launch a l l the th reads to con t r o l the c l u s t e r s on ly once ∗/

23

#pragma omp p a r a l l e l num threads (NB CLUSTERS)
36 {

for (int i = 0 ; i < N; i++) {
/∗ Execute 1 i t e r a t i o n per thread and the r e w i l l be some ordered

s ta tement .

41 I t i s u s e l e s s to wai t a t the end o f the i t e r a t i o n s , but i t l o o k s
l i k e a nowait here break the ordered . Compiler bug? ∗/

#pragma omp for schedu le (static , 1) ordered
for (int c l u s t e r = 0 ; c l u s t e r < NB CLUSTERS; c l u s t e r++) {

/∗ Get an ID in the order o f the s e q u en t i a l i t e r a t i o n . Remove the
46 ordered i f i t i s not needed . ∗/

int t ;
#pragma omp ordered

{
t = g e t t i c k e t () ;

51 }
int d = get data (t) ;
int r ;

#pragma omp p a r a l l e l for num threads (NB PES) reduct ion (+: r)
for (int pe = 0 ; pe < NB PES ; pe++)

56 #pragma smecy map(STHORM, c l u s t e r , pe)
r += compute (d , c l u s t e r , pe) ;

/∗ Produce the r e s u l t in order . Remove the ordered i f i t i s not
needed . ∗/

#pragma omp ordered
61 {

p r i n t f (” Clus te r %d produced %d f o r t i c k e t %d\n” , c l u s t e r , r , t) ;
}

}
}

66 }
}

9 Conclusion

Keep it
simple
Keep it
simple

24

