-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
228 lines (190 loc) · 9.09 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
'''
Author: khanovict
Jun 2021
'''
import argparse
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Disable tensorflow debugging logs
import tensorflow as tf
import time
from model import Generator, Discriminator
from utils import *
from hparams import hparams
def run_training(args):
print('\n##############')
print('TransGAN Train')
print('##############\n')
dataset_path = args.dataset_path
model_name = args.model_name
main_dir = args.main_dir
ckpt_interval = args.ckpt_interval
max_ckpt_to_keep = args.max_ckpt_to_keep
epochs = args.epochs
train_seed = args.train_seed
test_seed = args.test_seed
# Create dirs
os.makedirs(main_dir, exist_ok=True)
model_dir = os.path.join(main_dir, model_name)
log_dir = os.path.join(model_dir, 'log-dir')
writer = tf.summary.create_file_writer(log_dir)
gen_test_dir = os.path.join(model_dir, 'test-gen')
os.makedirs(gen_test_dir, exist_ok=True)
# Define model
generator = Generator(model_dim=hparams['g_dim'],
noise_dim=hparams['noise_dim'],
depth=hparams['g_depth'],
heads=hparams['g_heads'],
mlp_dim=hparams['g_mlp'],
initializer=hparams['g_initializer'])
discriminator = Discriminator(model_dim=hparams['d_dim'],
depth=hparams['d_depth'],
heads=hparams['d_heads'],
mlp_dim=hparams['d_mlp'],
initializer=hparams['d_initializer'],
patch_size=hparams['d_patch_size'],
policy=hparams['policy'])
generator_optimizer = tf.keras.optimizers.Adam(
learning_rate=hparams['g_learning_rate'],
beta_1=hparams['g_beta_1'],
beta_2=hparams['g_beta_2'])
discriminator_optimizer = tf.keras.optimizers.Adam(
learning_rate=hparams['d_learning_rate'],
beta_1=hparams['d_beta_1'],
beta_2=hparams['d_beta_2'])
# Create/Load checkpoint
checkpoint_dir = os.path.join(model_dir, 'training-checkpoints')
ckpt = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer,
generator=generator,
discriminator=discriminator,
epoch=tf.Variable(0))
ckpt_manager = tf.train.CheckpointManager(ckpt, directory=checkpoint_dir,
max_to_keep=max_ckpt_to_keep)
ckpt.restore(ckpt_manager.latest_checkpoint)
if ckpt_manager.latest_checkpoint:
print('Restored {} from: {}\n'.format(model_name, ckpt_manager.latest_checkpoint))
else:
print('Initializing {} from scratch\n'.format(model_name))
save_hparams(hparams, model_dir, model_name)
for key, value in hparams.items():
print(key, ': ', value)
print('\n')
# Dataset stup
print("dataset preparation\n")
if dataset_path == 'CIFAR-10':
(train_images, _), (_, _) = tf.keras.datasets.cifar10.load_data()
train_images = train_images.astype('float32')
train_images = (train_images - 127.5) / 127.5
train_dataset = create_cifar_ds(train_images, hparams['batch_size'], seed=train_seed)
else:
train_dataset = create_train_ds(dataset_path, hparams['batch_size'], seed=train_seed)
print("loss function initialization\n")
if hparams['loss'] == 'bce':
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_img, fake_img):
real_loss = cross_entropy(tf.ones_like(real_img), real_img)
fake_loss = cross_entropy(tf.zeros_like(fake_img), fake_img)
return real_loss + fake_loss
def generator_loss(fake_img):
return cross_entropy(tf.ones_like(fake_img), fake_img)
elif hparams['loss'] == 'hinge':
def d_real_loss(logits):
return tf.reduce_mean(tf.nn.relu(1.0 - logits))
def d_fake_loss(logits):
return tf.reduce_mean(tf.nn.relu(1.0 + logits))
def discriminator_loss(real_img, fake_img):
real_loss = d_real_loss(real_img)
fake_loss = d_fake_loss(fake_img)
return fake_loss + real_loss
def generator_loss(fake_img):
return -tf.reduce_mean(fake_img)
elif hparams['loss'] == 'wgan':
def discriminator_loss(real_img, fake_img):
real_loss = tf.reduce_mean(real_img)
fake_loss = tf.reduce_mean(fake_img)
return fake_loss - real_loss + (tf.reduce_mean(real_img) ** 2) * 1e-3
def generator_loss(fake_img):
return -tf.reduce_mean(fake_img)
gen_loss_avg = tf.keras.metrics.Mean()
disc_loss_avg = tf.keras.metrics.Mean()
gp_avg = tf.keras.metrics.Mean()
print("start training\n")
@tf.function
def train_step(real_images):
noise = tf.random.normal([hparams['batch_size'], hparams['noise_dim']])
# Train the discriminator
for _ in range(hparams['d_steps']):
with tf.GradientTape() as disc_tape:
generator_output = generator(noise, training=True)
real_disc_output = discriminator(real_images, training=True)
fake_disc_output = discriminator(generator_output[0], training=True)
d_cost = discriminator_loss(real_disc_output[0], fake_disc_output[0])
if hparams['loss'] == 'wgan':
gp = gradient_penalty(
discriminator, real_images,
generator_output[0]) * hparams['gp_weight']
else:
gp = 0.0
disc_loss = d_cost + gp
disc_gradients = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
disc_gradients, _ = tf.clip_by_global_norm(disc_gradients, 5.0)
discriminator_optimizer.apply_gradients(zip(disc_gradients, discriminator.trainable_variables))
disc_loss_avg(d_cost)
gp_avg(gp)
noise = tf.random.normal([hparams['batch_size'], hparams['noise_dim']])
# Train the generator
with tf.GradientTape() as gen_tape:
generator_output = generator(noise, training=True)
fake_disc_output = discriminator(generator_output[0], training=True)
gen_loss = generator_loss(fake_disc_output[0])
gen_gradients = gen_tape.gradient(gen_loss, generator.trainable_variables)
gen_gradients, _ = tf.clip_by_global_norm(gen_gradients, 5.0)
generator_optimizer.apply_gradients(zip(gen_gradients, generator.trainable_variables))
gen_loss_avg(gen_loss)
# n examples to plot with generate_and_save_images()
num_examples_to_generate = args.n_plot_images
# noise_seed to plot with generate_and_save_images()
noise_seed = tf.random.normal([num_examples_to_generate,
hparams['noise_dim']], seed=test_seed)
writer = tf.summary.create_file_writer(log_dir)
for _ in range(int(ckpt.epoch), epochs):
start = time.time()
step_int = int(ckpt.epoch)
# Clear metrics
gen_loss_avg.reset_states()
disc_loss_avg.reset_states()
gp_avg.reset_states()
# Run epoch
for image_batch in train_dataset:
train_step(image_batch)
# Print and save Tensorboard
print('\nTime for epoch {} is {} sec'.format(step_int, time.time()-start))
print('Generator loss: {:.4f}'.format(gen_loss_avg.result()))
print('Discriminator loss: {:.4f}'.format(disc_loss_avg.result()))
print('GP: {:.4f}'.format(gp_avg.result()))
with writer.as_default():
tf.summary.scalar('generator_loss', gen_loss_avg.result(), step=step_int)
tf.summary.scalar('discriminator_loss', disc_loss_avg.result(), step=step_int)
tf.summary.scalar('gp', gp_avg.result(), step=step_int)
# Generate and save test images plot
generate_and_save_images(generator, step_int, noise_seed, gen_test_dir)
# Save checkpoint
if (step_int) % ckpt_interval == 0:
ckpt_manager.save(step_int)
print('Checkpoint saved at epoch {}'.format(step_int))
ckpt.epoch.assign_add(1)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_path', default='CIFAR-10')
parser.add_argument('--model_name', default='model')
parser.add_argument('--main_dir', default='logs-TransGAN')
parser.add_argument('--ckpt_interval', type=int, default=5)
parser.add_argument('--max_ckpt_to_keep', type=int, default=5)
parser.add_argument('--epochs', type=int, default=5000)
parser.add_argument('--train_seed', type=int, default=15)
parser.add_argument('--test_seed', type=int, default=15)
parser.add_argument('--n_plot_images', type=int, default=64)
args = parser.parse_args()
run_training(args)
if __name__ == '__main__':
main()