-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
274 lines (241 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from multiprocessing import Process, Value, Array, RawArray
from collections import OrderedDict
import numpy as np
from OC_theano import AOCAgent_THEANO
#import cv2
import copy,sys,pickle,os,time,argparse
from PIL import Image
from utils.helper import foldercreation, str2bool, get_folder_name
import pdb
class Environment():
def reset(self):
raise NotImplementedError
def render(self):
raise NotImplementedError
def act(self):
raise NotImplementedError
def get_frame_count(self):
raise NotImplementedError
class ALE_env(Environment):
def __init__(self, args, rng=None):
import gym
env = gym.make(args.sub_env+"NoFrameskip-v4")
#pdb.set_trace()
self.args = args
self.rng = rng
self.env = env
self.action_space = self.env.action_space.n
self.obs_space = self.env.observation_space.shape
if self.args.testing:
import matplotlib.pyplot as plt
plt.ion()
plt.show(block=False)
def get_lives(self):
return self.env.unwrapped.ale.lives()
def noops(self):
num_actions = self.rng.randint(1, self.args.max_start_nullops)
for i in range(np.max([num_actions//self.args.frame_skip, self.args.concat_frames])):
self.act(0)
if self.env.unwrapped.get_action_meanings()[1] == 'FIRE':
self.act(1)
def reset(self):
self.current_x = np.zeros((self.args.concat_frames*(1 if self.args.grayscale else 3), 84, 84), dtype="float32")
self.new_obs = self.env.reset()
self.lives = self.get_lives()
self.noops()
return self.current_x
def render(self):
a = 2
if a == 1: #can see what the agent sees
import matplotlib.pyplot as plt
plt.clf()
if self.args.grayscale:
plt.imshow(self.xx, cmap="Greys_r")
else:
x = np.swapaxes(self.xx, 0,2)
x_ = np.copy(x[0])
x[0] = x[2]
x[2] = x_
plt.imshow(x)
plt.draw()
plt.pause(0.0001)
else:
self.env.render()
def get_new_frame(self, new_frame):
a = 1 if self.args.grayscale else 3
self.current_x[:-a] = self.current_x[a:]
self.current_x[-a:] = new_frame
def act(self, action):
raw_reward, dones, done = 0, 0, False
for i in range(self.args.frame_skip):
if done:
break
new_obs, rew, done, info = self.env.step(action) #calculate 1-step TD(so,wo) for first time here and that is all!
self.old_obs = np.copy(self.new_obs)
self.new_obs = new_obs
raw_reward += rew
dones += done
new_frame = self.preprocess(self.new_obs, self.old_obs)
self.get_new_frame(new_frame)
dones += (self.get_frame_count() > self.args.max_frames_ep)
new_lives = self.get_lives()
death = new_lives < self.lives
self.lives = new_lives
if death and not bool(int(dones)):
self.noops()
return self.current_x, raw_reward, bool(int(dones)), death
def preprocess(self, im, last_im):
if self.args.color_max:
im = np.maximum(im, last_im)
if self.args.grayscale:
proportions = [0.299, 0.587, 0.114]
im = np.sum(im * proportions, axis=2)
#im = cv2.resize(im, (84, 110), interpolation=cv2.INTER_AREA)[18:102, :]
im = Image.fromarray(im).resize((84, 84), resample=Image.BILINEAR)
x = np.array(im).astype("int32")
if not self.args.grayscale:
x = np.swapaxes(x, 0, 2)
self.xx = x
return x
def get_frame_count(self):
return self.env.unwrapped.ale.getEpisodeFrameNumber()
class Training():
def __init__(self, rng, id_num, arr, num_moves, args):
self.args = args
self.rng = rng
self.num_moves = num_moves
self.id_num = id_num
self.env = ALE_env(args, rng=rng)
self.agent = AOCAgent_THEANO(self.env.action_space, id_num, arr, num_moves, args)
self.count = 0
self.train()
def train(self):
total_reward = 0
x = self.env.reset() #returns the current x
self.count += 1
self.agent.reset(x)
timer = time.time()
recent_fps = []
frame_counter = 0
total_games = 0
done = False
counter_testgames = 0
totalreward_k_games = 0
reward_k_games = []
while self.num_moves.value < self.args.max_num_frames:
if done:
#ugly code, beautiful print
total_games += 1
secs = round(time.time()-timer, 1)
frames = self.env.get_frame_count()
fps = int(frames/secs)
recent_fps = recent_fps[-9:]+[fps]
eta = ((self.args.max_num_frames-self.num_moves.value)*self.args.frame_skip/(self.args.num_threads*np.mean(recent_fps)))
print "id: %d\treward: %d\ttime: %.1f\tframes: %d\t %dfps \tmoves: %d \t ETA: %dh %dm %ds \t%.2f%%" % \
(self.id_num, total_reward, secs, frames, fps, self.num_moves.value, int(eta/3600), int(eta/60)%60, int(eta%60),
float(self.num_moves.value)/self.args.max_num_frames*100)
if self.args.testing:
if total_games <= self.args.kgames:
reward_k_games = np.append(reward_k_games,total_reward)
totalreward_k_games += total_reward
if total_games > self.args.kgames:
avgreward_k_games = totalreward_k_games/self.args.kgames
print "----------------------------------------------"
print "average reward for k games: ", avgreward_k_games
print "Numpy average reward for k games: ", (np.mean(reward_k_games))
print "std deviation for k games: ", (np.std(reward_k_games))
exit(0)
timer = time.time()
frame_counter = 0
if total_games % 1 == 0 and self.id_num == 1 and not self.args.testing:
self.agent.save_values(folder_name)
print "saved model"
total_reward = 0
x = self.env.reset() #get next state
self.count = 1
self.agent.reset(x)
done = False
action = self.agent.get_action(x)
if self.count == 1:
self.agent.so_init = x
self.agent.wo_init = self.agent.current_o
self.agent.initstateoptionflag = True
elif (x == self.agent.so_init) and (self.agent.current_o == self.agent.wo_init):
self.agent.initstateoptionflag = True
new_x, reward, done, death = self.env.act(action) #Takes an action
self.agent.store(x, new_x, action, reward, done, death)
if self.args.testing:
self.env.render()
total_reward += reward
x = np.copy(new_x)
def parse_params():
parser = argparse.ArgumentParser()
parser.add_argument('--sub-env', type=str, default="Breakout")
parser.add_argument('--testing', type=str2bool, default=False)
parser.add_argument('--update-freq', type=int, default=5)
parser.add_argument('--max-update-freq', type=int, default=30)
parser.add_argument('--num-threads', type=int, default=16)
parser.add_argument('--death-ends-episode', type=str2bool, default=True)
parser.add_argument('--max-start-nullops', type=int, default=30)
parser.add_argument('--frame-skip', type=int, default=4)
parser.add_argument('--concat-frames', type=int, default=4)
parser.add_argument('--entropy-reg', type=float, default=0.01)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--clip', type=float, default=40)
parser.add_argument('--clip-type', type=str, default="global", choices=["norm", "global"])
parser.add_argument('--color-averaging', type=str2bool, default=False)
parser.add_argument('--color-max', type=str2bool, default=True)
parser.add_argument('--grayscale', type=str2bool, default=True)
parser.add_argument('--max-num-frames', type=int, default=80000000)
parser.add_argument('--max-frames-ep', type=int, default=72000)
parser.add_argument('--init-lr', type=float, default=0.0007)
parser.add_argument('--rms-shared', type=str2bool, default=True)
parser.add_argument('--critic-coef', type=float, default=1.)
parser.add_argument('--num-options', type=int, default=8)
parser.add_argument('--option-epsilon', type=float, default=0.1)
parser.add_argument('--delib-cost', type=float, default=0.0)
parser.add_argument('--margin-cost', type=float, default=0.0)
parser.add_argument('--save-path', type=str, default="models")
parser.add_argument('--load-folder', type=str, default="") # if not empty, will load folder to resume training
parser.add_argument('--folder-name', type=str, default="")
parser.add_argument('--resume-if-exists', type=str2bool, default=False) # for server that kills and restarts processes
parser.add_argument('--controllability',type=str2bool, default=False)
parser.add_argument('--beta', type=float, default=0.0)
parser.add_argument('--kgames', type=int, default=1) #For testing on k games
return parser.parse_known_args()[0] #parser.parse_args()
if __name__ == '__main__':
params = parse_params()
folder_name = get_folder_name(params) if params.folder_name == "" else params.folder_name
attempted_path = "./"+params.save_path+"/"+folder_name
print "->", attempted_path, os.path.isdir(attempted_path)
if params.resume_if_exists and os.path.isdir(attempted_path):
params.load_folder = attempted_path
print "RESUMING TRAINING AUTOMATICALLY"
init_num_moves = 0
if params.load_folder != "":
folder_name = params.load_folder
with open(folder_name+"/data.csv", "rb") as file:
for last in file:
if last.split(",")[0].isdigit():
init_num_moves = int(last.split(",")[0])
init_weights = pickle.load(open(folder_name+"/model.pkl", "rb"))
is_testing = copy.deepcopy(params.testing)
params = pickle.load(open(params.load_folder+"/params.pkl", "rb"))
params.testing = is_testing
if is_testing:
params.num_threads = 1
else:
folder_name = foldercreation(folder_name, params)
pickle.dump(params, open(folder_name+"/params.pkl", "wb"))
setattr(params, "folder_name", folder_name)
setattr(params, "init_num_moves", init_num_moves)
print "init_num_moves:", init_num_moves
f = lambda rng, i, shared_arr, num_moves, args: Training(rng, i, shared_arr, num_moves, args)
env = ALE_env(params)
if init_num_moves == 0:
init_weights = (AOCAgent_THEANO(env.action_space, 0, args=params)).get_param_vals()
num_moves = Value("i", init_num_moves, lock=False)
arr = [Array('f', m.flatten(), lock=False) for m in init_weights]
seed = np.random.randint(10000)
for i in range(params.num_threads):
Process(target=f, args=(np.random.RandomState(seed+i), i+1, arr, num_moves, params)).start()