-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathcifar10.py
169 lines (135 loc) · 5.67 KB
/
cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# -*- coding:utf-8 -*-
import os
import sys
import time
import pickle
import random
import numpy as np
class_num = 10
image_size = 32
img_channels = 3
# ========================================================== #
# ├─ prepare_data()
# ├─ download training data if not exist by download_data()
# ├─ load data by load_data()
# └─ shuffe and return data
# ========================================================== #
def download_data():
dirname = 'cifar-10-batches-py'
origin = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
fname = 'cifar-10-python.tar.gz'
fpath = './' + dirname
download = False
if os.path.exists(fpath) or os.path.isfile(fname):
download = False
print("DataSet aready exist!")
else:
download = True
if download:
print('Downloading data from', origin)
import urllib.request
import tarfile
def reporthook(count, block_size, total_size):
global start_time
if count == 0:
start_time = time.time()
return
duration = time.time() - start_time
progress_size = int(count * block_size)
speed = int(progress_size / (1024 * duration))
percent = min(int(count * block_size * 100 / total_size), 100)
sys.stdout.write("\r...%d%%, %d MB, %d KB/s, %d seconds passed" %
(percent, progress_size / (1024 * 1024), speed, duration))
sys.stdout.flush()
urllib.request.urlretrieve(origin, fname, reporthook)
print('Download finished. Start extract!', origin)
if (fname.endswith("tar.gz")):
tar = tarfile.open(fname, "r:gz")
tar.extractall()
tar.close()
elif (fname.endswith("tar")):
tar = tarfile.open(fname, "r:")
tar.extractall()
tar.close()
def unpickle(file):
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
def load_data_one(file):
batch = unpickle(file)
data = batch[b'data']
labels = batch[b'labels']
print("Loading %s : %d." % (file, len(data)))
return data, labels
def load_data(files, data_dir, label_count):
global image_size, img_channels
data, labels = load_data_one(data_dir + '/' + files[0])
for f in files[1:]:
data_n, labels_n = load_data_one(data_dir + '/' + f)
data = np.append(data, data_n, axis=0)
labels = np.append(labels, labels_n, axis=0)
labels = np.array([[float(i == label) for i in range(label_count)] for label in labels])
data = data.reshape([-1, img_channels, image_size, image_size])
data = data.transpose([0, 2, 3, 1])
return data, labels
def prepare_data():
print("======Loading data======")
download_data()
data_dir = './cifar-10-batches-py'
image_dim = image_size * image_size * img_channels
meta = unpickle(data_dir + '/batches.meta')
label_names = meta[b'label_names']
label_count = len(label_names)
train_files = ['data_batch_%d' % d for d in range(1, 6)]
train_data, train_labels = load_data(train_files, data_dir, label_count)
test_data, test_labels = load_data(['test_batch'], data_dir, label_count)
print("Train data:", np.shape(train_data), np.shape(train_labels))
print("Test data :", np.shape(test_data), np.shape(test_labels))
print("======Load finished======")
print("======Shuffling data======")
indices = np.random.permutation(len(train_data))
train_data = train_data[indices]
train_labels = train_labels[indices]
print("======Prepare Finished======")
return train_data, train_labels, test_data, test_labels
# ========================================================== #
# ├─ _random_crop()
# ├─ _random_flip_leftright()
# ├─ data_augmentation()
# └─ color_preprocessing()
# ========================================================== #
def _random_crop(batch, crop_shape, padding=None):
oshape = np.shape(batch[0])
if padding:
oshape = (oshape[0] + 2 * padding, oshape[1] + 2 * padding)
new_batch = []
npad = ((padding, padding), (padding, padding), (0, 0))
for i in range(len(batch)):
new_batch.append(batch[i])
if padding:
new_batch[i] = np.lib.pad(batch[i], pad_width=npad,
mode='constant', constant_values=0)
nh = random.randint(0, oshape[0] - crop_shape[0])
nw = random.randint(0, oshape[1] - crop_shape[1])
new_batch[i] = new_batch[i][nh:nh + crop_shape[0],
nw:nw + crop_shape[1]]
return new_batch
def _random_flip_leftright(batch):
for i in range(len(batch)):
if bool(random.getrandbits(1)):
batch[i] = np.fliplr(batch[i])
return batch
def color_preprocessing(x_train, x_test):
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train[:, :, :, 0] = (x_train[:, :, :, 0] - np.mean(x_train[:, :, :, 0])) / np.std(x_train[:, :, :, 0])
x_train[:, :, :, 1] = (x_train[:, :, :, 1] - np.mean(x_train[:, :, :, 1])) / np.std(x_train[:, :, :, 1])
x_train[:, :, :, 2] = (x_train[:, :, :, 2] - np.mean(x_train[:, :, :, 2])) / np.std(x_train[:, :, :, 2])
x_test[:, :, :, 0] = (x_test[:, :, :, 0] - np.mean(x_test[:, :, :, 0])) / np.std(x_test[:, :, :, 0])
x_test[:, :, :, 1] = (x_test[:, :, :, 1] - np.mean(x_test[:, :, :, 1])) / np.std(x_test[:, :, :, 1])
x_test[:, :, :, 2] = (x_test[:, :, :, 2] - np.mean(x_test[:, :, :, 2])) / np.std(x_test[:, :, :, 2])
return x_train, x_test
def data_augmentation(batch):
batch = _random_flip_leftright(batch)
batch = _random_crop(batch, [32, 32], 4)
return batch