-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_fuss.py
316 lines (265 loc) · 9.88 KB
/
evaluate_fuss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import argparse
import json
import statistics
from pathlib import Path
import losses
import my_torch_utils as utils
import soundfile as sf
import torch
import yaml
from datasets import FUSSDataset
from models import Separator
from torch.utils.data import DataLoader
eps = 1e-8
zero_mean = True
def save_audios(output_path, data, fs):
data = (data / abs(data).max()) * 0.95
sf.write(str(output_path), data.numpy().T, fs)
def test(args):
if args.model_dir is not None:
with open(args.model_dir / "train_setting.yaml") as f:
config = yaml.safe_load(f)
torch.manual_seed(config["seed"])
else:
config = {}
torch.manual_seed(10)
torch.backends.cudnn.deterministic = True
device = "cuda" if torch.cuda.is_available() else "cpu"
config["device"] = device
# setup dataloader
dataset = FUSSDataset(
args.data_dir,
args.stage,
return_audio_id=True,
)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=8)
cri = args.teacher_or_student
if args.mixture_consistency:
cri += "_mixconsis"
args.criteria = cri + "_" + args.criteria
if args.epochs is None:
with open(args.model_dir / "train_result.json") as f:
train_result = json.load(f)
args.epochs = utils.search_epochs_with_best_criteria2(
args.model_dir,
train_result,
args.num_epochs,
args.criteria,
)
# args.epochs = utils.search_epochs_with_best_criteria(
# train_result, args.num_epochs, args.criteria
# )
print(f"Use best {args.num_epochs} epochs: {args.epochs}")
else:
print(f"Use specified epochs: {args.epochs}")
# define output directory
output_folder_name = "epoch"
for i, epoch in enumerate(args.epochs):
output_folder_name += "-" + str(epoch)
output_dir = (
args.model_dir / f"best_{args.criteria}_{output_folder_name}" / args.stage
)
eval_output_dir = output_dir / "eval_results"
wav16k_output_dir = output_dir / "wavs"
eval_output_dir.mkdir(exist_ok=True, parents=True)
if args.save_wavs:
wav16k_output_dir.mkdir(exist_ok=True, parents=True)
print("Output dir:", output_dir)
else:
print("Wavs are not generated !!")
model_filename = "separator"
if args.teacher_or_student == "teacher":
model_filename = "teacher_" + model_filename
print("TEACHER model is evaluated rather than STUDENT")
# load pre-trained separation model
separator = Separator(config)
state_dict = utils.average_model_params(
args.model_dir, args.epochs, filename=model_filename
)
separator.load_state_dict(state_dict)
separator.to(device).eval()
results = []
results_total = {
"1src": {"num_data": 0, "sisdr": 0},
"2src": {"num_data": 0, "sisdr": 0},
"3src": {"num_data": 0, "sisdr": 0},
"4src": {"num_data": 0, "sisdr": 0},
}
results_total_mixture = {
"2src": {"num_data": 0, "sisdr": 0},
"3src": {"num_data": 0, "sisdr": 0},
"4src": {"num_data": 0, "sisdr": 0},
}
f = open(eval_output_dir / "results.txt", "w")
mix_sisdrs = {2: [], 3: [], 4: []}
# for i, (audio_id, data) in enumerate(metadata.items()):
for i, data in enumerate(dataloader):
mix, ref, n_refs, audio_id = data
n_refs = int(n_refs)
mix, ref = mix.to(device), ref[..., :n_refs, :].to(device)
audio_id = audio_id[0]
if abs(ref[..., 0, :]).sum() == 0:
if n_refs == 1:
print(f"remove the {i}-th sample with only-zero component")
continue
else:
print(f"remove background component from the {i}-th sample")
ref = ref[..., 1:, :]
n_refs -= 1
assert torch.all(
abs(ref).sum(dim=-1) > 0
), f"{i}-th sample is zero {abs(ref.sum(dim=-1))}"
mix = ref.sum(dim=-2)
std = torch.std(mix, dim=-1, keepdim=True)
mix = mix / std
with torch.no_grad():
y = separator(mix)
m = min(y.shape[-1], ref.shape[-1])
y, ref, mix = y[..., :m], ref[..., :m], mix[..., :m]
if args.mixture_consistency:
y = utils.mixture_consistency(y, mix)
# if y.shape[-2] > ref.shape[-2]:
# y = utils.most_energetic(y, n_src=ref.shape[-2])
# assert y.shape[-2] == ref.shape[-2]
y, ref, mix = y[0], ref[0], mix[0]
sisdr, perm = losses.sisdr_fuss_pit(
ref.to(torch.float64),
y.to(torch.float64),
eps=eps,
zero_mean=zero_mean,
return_perm=True,
)
assert sisdr.shape[0] == ref.shape[-2]
# discard the quiet samples
y = y[..., perm, :]
if n_refs > 1:
mix_sisdr = losses.sisdr_fuss(
ref.to(torch.float64),
mix.tile(n_refs, 1).to(torch.float64),
eps=eps,
zero_mean=zero_mean,
)
assert sisdr.shape == mix_sisdr.shape
sisdr -= mix_sisdr
sisdr = sisdr.to("cpu").numpy()
y = y.to("cpu") # y = y[..., perm, :].to("cpu")
# assert sisdr.shape[-1] == n_refs
results_total[f"{n_refs}src"]["num_data"] += 1
results_total[f"{n_refs}src"]["sisdr"] += sisdr.mean()
if n_refs > 1:
for z in range(n_refs):
mix_sisdrs[n_refs].append(mix_sisdr.to("cpu").numpy()[z])
results_total_mixture[f"{n_refs}src"]["num_data"] += 1
results_total_mixture[f"{n_refs}src"]["sisdr"] += (
mix_sisdr.to("cpu").numpy().mean()
)
result = {
audio_id: {
"background": {
"audio_path": str(wav16k_output_dir / audio_id / "background.wav"),
"sisdr": sisdr[0],
}
}
}
if args.save_wavs:
(wav16k_output_dir / audio_id).mkdir(parents=True)
save_audios(
str(wav16k_output_dir / audio_id / "background.wav"),
y[..., [0], :],
16000,
)
for n in range(n_refs - 1):
audio_path = str(wav16k_output_dir / audio_id / (f"foreground{n}.wav"))
if args.save_wavs:
save_audios(audio_path, y[..., [n + 1], :], 16000)
result[audio_id][f"foreground{n}"] = {}
result[audio_id][f"foreground{n}"]["audio_path"] = (audio_path,)
result[audio_id][f"foreground{n}"]["sisdr"] = sisdr[n + 1]
results.append(result)
ith_result = "{:.0f}-th sample | {:.0f} sources | SISDR: {:.3f}".format(
i, n_refs, sisdr.mean()
)
f.write(ith_result + "\n")
if args.verbose:
print(ith_result)
if args.limit is not None and i == args.limit - 1:
break
f.close()
for z in range(2, 5, 1):
print(
f"Min:{min(mix_sisdrs[z])} Max:{max(mix_sisdrs[z])} Median:{statistics.median(mix_sisdrs[z])}"
)
trf, msi, total_data = 0, 0, 0
# print(results_total, "\n\n")
for n in range(4):
total_data += results_total[f"{n+1}src"]["num_data"]
trf += results_total[str(n + 1) + "src"]["sisdr"]
if n > 0:
msi += results_total[str(n + 1) + "src"]["sisdr"]
results_total[str(n + 1) + "src"]["sisdr"] /= results_total[f"{n+1}src"][
"num_data"
]
results_total[str(n + 1) + "src"]["sisdr"] = round(
results_total[f"{n+1}src"]["sisdr"], 4
)
if n > 0:
results_total_mixture[f"{n+1}src"]["sisdr"] /= results_total_mixture[
str(n + 1) + "src"
]["num_data"]
results_total_mixture[f"{n+1}src"]["sisdr"] = round(
results_total_mixture[str(n + 1) + "src"]["sisdr"], 4
)
msi = round(msi / (total_data - results_total["1src"]["num_data"]), 3)
trf = round(trf / total_data, 3)
results_total["msi"] = msi
results_total["trf"] = trf
print("\n", results_total)
print("mixture", results_total_mixture)
print(f"MSi: {msi} | TRF: {trf}")
with open(eval_output_dir / "results_per_data.json", "w") as f:
json.dump(results, f, indent=3)
with open(eval_output_dir / "results_summary.json", "w") as f:
json.dump(results_total, f, indent=3)
# print("EPOCHs", args.epochs)
# print("Output dir is: ", output_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("model_dir", type=Path)
parser.add_argument("data_dir", type=Path)
parser.add_argument(
"--stage", type=str, default="test", choices=["train", "valid", "test"]
)
parser.add_argument(
"--teacher_or_student",
type=str,
choices=["student", "teacher"],
default="student",
help="Choose the one you want to evaluate from [teacher, student]",
)
parser.add_argument(
"-n",
"--num_epochs",
type=int,
default=5,
help="Specify number of epochs to be chosen with best criterion. This parser must be specified with --criteria.",
)
parser.add_argument(
"-c",
"--criteria",
type=str,
default="trf",
choices=["trf", "msi"],
help="Criteria to select checkpoint. This parser must be specified with --num_epochs.",
)
parser.add_argument(
"-e",
"--epochs",
nargs="+",
help="List of epoch numbers. Basically we should specify -n and -c instead of -e",
)
parser.add_argument("-l", "--limit", type=int, default=None)
parser.add_argument("-v", "--verbose", action="store_true")
parser.add_argument("-m", "--mixture_consistency", action="store_true")
parser.add_argument("--save_wavs", action="store_true")
args = parser.parse_args()
test(args)