-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathssmf.py
315 lines (240 loc) · 9.43 KB
/
ssmf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
""" SSMF: Shifting Seasonal Matrix Factorization """
import argparse
import warnings
from copy import deepcopy
import time
import numpy as np
from tqdm import trange
try:
import ncp
import utils
except:
from . import ncp
from . import utils
class SSMF:
def __init__(self, periodicity, n_components,
max_regimes=100, epsilon=1e-12,
alpha=0.1, beta=0.05, max_iter=5, update_freq=1,
init_cycles=3, float_cost=32):
assert periodicity > 0
assert n_components > 1
assert max_regimes > 0
assert init_cycles > 1
self.s = periodicity
self.k = n_components
self.r = max_regimes
self.g = 1 # of regimes
self.eps = epsilon # zero threshold
self.alpha = alpha # learning rate
self.beta = beta # A lager value may create more regimes
self.init_cycles = init_cycles
self.max_iter = max_iter
self.update_freq = update_freq
self.float_cost = float_cost
def initialize(self, X):
self.d = X.shape[:-1]
self.n = X.shape[-1]
# U(t) and V(t)
self.U = [np.zeros((i, self.k)) for i in self.d]
# Full history of W(t)
self.W = np.zeros((self.r, self.s + self.n, self.k))
# Regime history
self.R = np.zeros(self.n, dtype=int)
# Operation history
self.O = np.zeros(self.n, dtype=int)
# Estimate the initial factors
X_fold = [X[..., i*self.s:(i+1)*self.s] for i in range(self.init_cycles)]
X_fold = np.array(X_fold).sum(axis=0) / self.init_cycles
factor = ncp.ncp(X_fold, self.k, maxit=3)
self.W[:, :self.s] = factor[-1]
# Normalization
for i in range(len(self.d)):
weights = np.sqrt(np.sum(factor[i] ** 2, axis=0))
self.U[i] = factor[i] @ np.diag(1 / weights)
self.W[:, :self.s] = self.W[:, :self.s] @ np.diag(weights)
@staticmethod
def apply_grad(U, wt, Xt, alpha, eps):
U0, U1 = U
D = np.diag(wt)
k = U0.shape[1]
grad = [
Xt @ U1 @ D - U0 @ D @ (U1.T @ U1) @ D,
Xt.T @ U0 @ D - U1 @ D @ (U0.T @ U0) @ D
]
wt_new = np.copy(wt)
for i in range(2):
# Smooth update
grad[i] *= min(1, alpha * np.sqrt(k) / np.sqrt(np.sum(grad[i] ** 2)))
U[i] += alpha * grad[i]
# Normalization
weights = np.sqrt(np.sum(U[i] ** 2, axis=0))
U[i] = U[i] @ np.diag((1 / weights))
U[i] = U[i].clip(min=eps, max=None)
wt_new = wt_new * weights
return U[0], U[1], wt_new
@staticmethod
def reconstruct(U, V, W):
Y = np.zeros((U.shape[0], V.shape[0], W.shape[0]))
for t, wt in enumerate(W):
Y[..., t] = U @ np.diag(wt) @ V.T
return Y
def fit(self, X):
n = X.shape[-1]
elapsed_time = np.zeros(n)
for t in range(self.s, n):
print('\nt=', t)
tic = time.process_time()
Xc = X[..., t-self.s:t]
self.update(Xc, t) # Algorithm 1
toc = time.process_time()
elapsed_time[t] = toc - tic
return elapsed_time
def update(self, X, t, verbose=0):
""" Algorithm 1 in the paper
X: current tensor (u, v, s)
t: current time point
"""
# P = None # new components
cost1 = cost2 = np.inf
self.W[:, t] = self.W[:, t - self.s] # Copy
cost1, ridx1 = self.regime_selection(X, t)
if t % self.update_freq == 0:
cost2, Unew, Wnew = self.regime_generation(X, t, ridx1, self.max_iter)
if verbose > 0:
print('RegimeSelection', cost1 + self.beta * cost1, ridx1)
print('RegimeGeneration', cost2, self.g,
'diff=', cost2 - (cost1 + self.beta * cost1))
if cost1 + self.beta * cost1 < cost2:
# print("\t---> keep")
self.R[t] = ridx1
else:
# print("\t---> create")
if self.g < self.r:
self.R[t] = self.g
self.U = Unew
self.W[self.g, t - self.s + 1: t + 1] = Wnew
self.g += 1
else:
self.R[t] = ridx1
if not self.g == 1:
warnings.warn("# of regimes exceeded the limit")
wt = self.W[self.R[t], t]
Xt = X[..., -1]
self.U[0], self.U[1], self.W[self.R[t], t] = self.apply_grad(
self.U, wt, Xt, self.alpha, self.eps)
# Non-negative constraint
assert self.U[0].min() >= 0
assert self.U[1].min() >= 0
assert self.W.min() >= 0
def regime_selection(self, X, t):
U, V = self.U
n = X.shape[-1]
Y = np.zeros(X.shape)
E = np.zeros(self.g)
for i in range(self.g):
Wi = self.W[i, t - n + 1:t + 1]
Y = self.reconstruct(U, V, Wi)
E[i] = utils.compute_coding_cost(X, Y, self.float_cost)
best_regime_index = np.argmin(E)
best_coding_cost = E[best_regime_index]
return best_coding_cost, best_regime_index
def regime_generation(self, X, t, ridx, max_iter=1):
# Initialize a new W with the nearest components
n = X.shape[-1]
U = deepcopy(self.U[0])
V = deepcopy(self.U[1])
W = np.zeros((self.s, self.k))
W = self.W[ridx, t - self.s + 1:t + 1]
# Fitting
for _ in range(max_iter):
for tt in range(n):
U, V, W[tt] = self.apply_grad(
[U, V], W[tt], X[..., tt], 0.5, self.eps)
Y = self.reconstruct(U, V, W)
E = utils.compute_coding_cost(X, Y, self.float_cost)
E += utils.compute_model_cost(W, self.float_cost, self.eps)
return E, [U, V], W
def forecast(self, ridx, current_time, forecast_time, forecast_steps=1):
"""
- timepoint (int):
A point you want to forecast
- forecast_time (int, optional):
length of forecast steps from the timepoint
- forecast_steps (int, optional):
length of forecast steps from the timepoint
"""
U, V = self.U
if forecast_steps == 1:
t_seas = current_time - self.s
t_seas += np.mod(forecast_time, self.s)
wt = self.W[ridx, t_seas]
# print(wt)
return U @ np.diag(wt) @ V.T
else:
# Forecast sequantially
pred = [
self.forecast(ridx, current_time, forecast_time + dt)
for dt in range(forecast_steps)
]
return np.moveaxis(pred, 0, -1)
def fit_forecast(self, X, current_time, forecast_step=0):
""" Perform RegimeSelection then forecasting
X: current tensor
current_time: current timepoint
forecast_step:
"""
_, ridx = self.regime_selection(X, current_time)
return self.forecast(ridx, current_time, forecast_step)
def test(self, X, r_test):
"""
X: a tensor
"""
n = X.shape[-1]
Y = np.zeros(X.shape)
res = []
for t in trange(self.s, n - r_test, desc='eval'):
Xc = X[..., t-self.s:t]
self.update(Xc, t) # Algorithm 1
if t % r_test == 0:
Y[..., t:t+r_test] = self.forecast(
self.R[t], t, t, forecast_steps=r_test)
met = utils.eval(X[..., t:t+r_test], Y[..., t:t+r_test])
res.append(met)
print("Total regimes=", self.g)
print("RMSE=", np.mean(res))
def save(self, output_dir):
np.save(output_dir + '/U.npy', self.U[0])
np.save(output_dir + '/V.npy', self.U[1])
np.save(output_dir + '/W.npy', self.W)
np.savetxt(output_dir + '/R.txt', self.R)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='disease')
parser.add_argument('--output_dir', type=str, default='out')
parser.add_argument('--periodicity', type=int, default=52)
parser.add_argument('--n_components', type=int, default=10)
parser.add_argument('--max_regimes', type=int, default=50)
parser.add_argument('--max_iter', type=int, default=1)
parser.add_argument('--learning_rate', type=float, default=0.2)
parser.add_argument('--penalty', type=float, default=0.05)
parser.add_argument('--float_cost', type=int, default=32)
parser.add_argument('--forecast_step', type=int, default=200)
parser.add_argument('--update_freq', type=int, default=1)
config = parser.parse_args()
utils.make_directory(config.output_dir)
if config.dataset == 'disease':
tensor = utils.load_tycho(
'data/project_tycho.csv.gz', as_tensor=True)
# print(tensor.shape)
model = SSMF(periodicity=config.periodicity,
n_components=config.n_components,
max_regimes=config.max_regimes,
alpha=config.learning_rate,
beta=config.penalty,
update_freq=config.update_freq,
float_cost=config.float_cost)
model.initialize(tensor)
# model.fit(tensor) # just fit data streams and save results
model.test(tensor, config.forecast_step)
model.save(config.output_dir)
utils.plot_ssmf(config.output_dir, model)