This repository has been archived by the owner on Feb 19, 2019. It is now read-only.
forked from yuxng/MDP_Tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMDP_train_gt.m
251 lines (207 loc) · 8.16 KB
/
MDP_train_gt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
% --------------------------------------------------------
% MDP Tracking
% Copyright (c) 2015 CVGL Stanford
% Licensed under The MIT License [see LICENSE for details]
% Written by Yu Xiang
% --------------------------------------------------------
%
% offline training using ground truth annotations
function tracker = MDP_train_gt(seq_idx, tracker)
is_show = 0;
is_save = 1;
is_text = 0;
is_pause = 0;
opt = globals();
opt.is_show = is_show;
seq_name = opt.mot2d_train_seqs{seq_idx};
seq_num = opt.mot2d_train_nums(seq_idx);
seq_set = 'train';
if is_show
close all;
end
% build the dres structure for images
filename = sprintf('%s/%s_dres_image.mat', opt.results, seq_name);
if exist(filename, 'file') ~= 0
object = load(filename);
dres_image = object.dres_image;
fprintf('load images from file %s done\n', filename);
else
dres_image = read_dres_image(opt, seq_set, seq_name, seq_num);
fprintf('read images done\n');
save(filename, 'dres_image', '-v7.3');
end
% read ground truth
filename = fullfile(opt.mot, opt.mot2d, seq_set, seq_name, 'gt', 'gt.txt');
dres_gt_all = read_mot2dres(filename);
dres_gt_all = fix_groundtruth(seq_name, dres_gt_all);
% generate training data
I = dres_image.Igray{1};
[dres_train, dres_det, labels] = generate_training_data(seq_idx, dres_image, opt);
% for debugging
% dres_train = {dres_train{6}};
% intialize tracker
if nargin < 2 || isempty(tracker) == 1
fprintf('initialize tracker from scratch\n');
tracker = MDP_initialize(I, dres_det, labels, opt);
else
% continuous training
fprintf('continuous training\n');
tracker.image_width = size(I,2);
tracker.image_height = size(I,1);
tracker.max_width = max(dres_det.w);
tracker.max_height = max(dres_det.h);
tracker.max_score = max(dres_det.r);
factive = MDP_feature_active(tracker, dres_det);
index = labels ~= 0;
tracker.factive = [tracker.factive; factive(index,:)];
tracker.lactive = [tracker.lactive; labels(index)];
tracker.w_active = svmtrain(tracker.lactive, tracker.factive, '-c 1 -q');
end
% for each training sequence
num_train = numel(dres_train);
for t = 1:num_train
fprintf('tracking sequence %d\n', t);
dres_gt = dres_train{t};
% first frame
fr = dres_gt.fr(1);
id = dres_gt.id(1);
% reset tracker
tracker.prev_state = 1;
tracker.state = 1;
tracker.target_id = id;
% start tracking
while fr <= dres_gt.fr(end)
if is_text
fprintf('\nframe %d, state %d\n', fr, tracker.state);
end
% show results
if is_show
figure(1);
% show ground truth
subplot(2, 3, 1);
show_dres(fr, dres_image.I{fr}, 'GT', dres_gt);
% show detections
subplot(2, 3, 2);
show_dres(fr, dres_image.I{fr}, 'Detections', dres_det);
end
if tracker.state == 0
break;
elseif tracker.state == 1
% initialize the LK tracker with gt
tracker = LK_initialize(tracker, fr, id, dres_gt, 1, dres_image);
tracker.state = 2;
tracker.streak_occluded = 0;
% build the dres structure
dres_one = [];
dres_one.fr = fr;
dres_one.id = id;
dres_one.x = dres_gt.x(1);
dres_one.y = dres_gt.y(1);
dres_one.w = dres_gt.w(1);
dres_one.h = dres_gt.h(1);
dres_one.r = 1;
dres_one.state = 2;
tracker.dres = dres_one;
% tracking by association
else
% find the ground truths for association
index_gt = find(dres_gt_all.fr == fr);
dres = sub(dres_gt_all, index_gt);
dres = MDP_crop_image_box(dres, dres_image.Igray{fr}, tracker);
[dres, index_det, ctrack] = generate_association_index(tracker, fr, dres);
% check if occluded or not
index_gt = find(dres_gt.fr == fr);
if isempty(index_gt) == 1 || dres_gt.covered(index_gt) ~= 0
index_det = [];
end
if is_show
figure(1);
subplot(2, 3, 3);
show_dres(fr, dres_image.I{fr}, 'Potential Associations', sub(dres, index_det));
hold on;
plot(ctrack(1), ctrack(2), 'ro', 'LineWidth', 2);
hold off;
end
% compute features
if isempty(index_det) == 0 && isempty(find(dres.id(index_det) == tracker.target_id, 1)) == 0
% extract features with LK association
dres_associate = sub(dres, index_det);
features = MDP_feature_occluded(fr, dres_image, dres_associate, tracker);
% compute labels
m = size(features, 1);
labels = -1 * ones(m, 1);
ind = find(dres_associate.id == tracker.target_id);
labels(ind) = 1;
% update features
tracker.f_occluded(end+1:end+m,:) = features;
tracker.l_occluded(end+1:end+m) = labels;
if is_text
fprintf('training examples in occluded state %d\n', size(tracker.f_occluded,1));
end
% update template
dres_one = sub(dres_associate, ind);
tracker = LK_associate(fr, dres_image, dres_one, tracker);
tracker.prev_state = tracker.state;
tracker.state = 2;
% build the dres structure
dres_one = [];
dres_one.fr = fr;
dres_one.id = tracker.target_id;
dres_one.x = tracker.bb(1);
dres_one.y = tracker.bb(2);
dres_one.w = tracker.bb(3) - tracker.bb(1);
dres_one.h = tracker.bb(4) - tracker.bb(2);
dres_one.r = 1;
dres_one.state = 2;
if tracker.dres.fr(end) == fr
dres_tmp = tracker.dres;
index_tmp = 1:numel(dres_tmp.fr)-1;
tracker.dres = sub(dres_tmp, index_tmp);
end
tracker.dres = interpolate_dres(tracker.dres, dres_one);
% update LK tracker
tracker = LK_update(fr, tracker, dres_image.Igray{fr}, dres_associate, 1);
else
tracker.state = 3;
dres_one = sub(tracker.dres, numel(tracker.dres.fr));
dres_one.fr = fr;
dres_one.id = tracker.target_id;
dres_one.state = 3;
if tracker.dres.fr(end) == fr
dres_tmp = tracker.dres;
index_tmp = 1:numel(dres_tmp.fr)-1;
tracker.dres = sub(dres_tmp, index_tmp);
end
tracker.dres = concatenate_dres(tracker.dres, dres_one);
end
end
% show results
if is_show
figure(1);
% show tracking results
subplot(2, 3, 4);
show_dres(fr, dres_image.I{fr}, 'Tracking', tracker.dres, 2);
% show lost targets
subplot(2, 3, 5);
show_dres(fr, dres_image.I{fr}, 'Lost', tracker.dres, 3);
subplot(2, 3, 6);
show_templates(tracker, dres_image);
fprintf('frame %d, state %d\n', fr, tracker.state);
if is_pause
pause();
else
pause(0.01);
end
% filename = sprintf('results/%s_%06d.png', seq_name, fr);
% hgexport(h, filename, hgexport('factorystyle'), 'Format', 'png');
end
fr = fr + 1;
end
end
tracker.w_occluded = svmtrain(tracker.l_occluded, tracker.f_occluded, '-c 1 -q -g 1 -b 1');
fprintf('Finish training %s\n', seq_name);
% save model
if is_save
filename = sprintf('%s/%s_tracker_gt.mat', opt.results, seq_name);
save(filename, 'tracker');
end