-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathLIS2MDL.cpp
244 lines (189 loc) · 7.47 KB
/
LIS2MDL.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/* 09/23/2017 Copyright Tlera Corporation
Created by Kris Winer
This sketch uses SDA/SCL on pins 21/20 (Butterfly default), respectively, and it uses the Butterfly STM32L433CU Breakout Board.
The LIS2MDL is a low power magnetometer, here used as 3 DoF in a 9 DoF absolute orientation solution.
Library may be used freely and without limit with attribution.
*/
#include "LIS2MDL.h"
LIS2MDL::LIS2MDL(uint8_t intPin)
{
pinMode(intPin, INPUT);
_intPin = intPin;
}
uint8_t LIS2MDL::getChipID()
{
uint8_t c = readByte(LIS2MDL_ADDRESS, LIS2MDL_WHO_AM_I);
return c;
}
void LIS2MDL::reset()
{
// reset device
uint8_t temp = readByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A);
writeByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A, temp | 0x20); // Set bit 5 to 1 to reset LIS2MDL
delay(1);
writeByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A, temp | 0x40); // Set bit 6 to 1 to boot LIS2MDL
delay(100); // Wait for all registers to reset
}
void LIS2MDL::init(uint8_t MODR)
{
// enable temperature compensation (bit 7 == 1), continuous mode (bits 0:1 == 00)
writeByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A, 0x80 | MODR<<2);
// enable low pass filter (bit 0 == 1), set to ODR/4
writeByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_B, 0x01);
// enable data ready on interrupt pin (bit 0 == 1), enable block data read (bit 4 == 1)
writeByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C, 0x01 | 0x10);
}
uint8_t LIS2MDL::status()
{
// Read the status register of the altimeter
uint8_t temp = readByte(LIS2MDL_ADDRESS, LIS2MDL_STATUS_REG);
return temp;
}
void LIS2MDL::readData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z mag register data stored here
readBytes(LIS2MDL_ADDRESS, (0x80 | LIS2MDL_OUTX_L_REG), 8, &rawData[0]); // Read the 6 raw data registers into data array
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
}
int16_t LIS2MDL::readTemperature()
{
uint8_t rawData[2]; // x/y/z mag register data stored here
readBytes(LIS2MDL_ADDRESS, (0x80 | LIS2MDL_TEMP_OUT_L_REG), 2, &rawData[0]); // Read the 8 raw data registers into data array
int16_t temp = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
return temp;
}
void LIS2MDL::offsetBias(float * dest1, float * dest2)
{
int32_t mag_bias[3] = {0, 0, 0}, mag_scale[3] = {0, 0, 0};
int16_t mag_max[3] = {-32767, -32767, -32767}, mag_min[3] = {32767, 32767, 32767}, mag_temp[3] = {0, 0, 0};
float _mRes = 0.0015f;
Serial.println("Calculate mag offset bias: move all around to sample the complete response surface!");
delay(4000);
for (int ii = 0; ii < 4000; ii++)
{
readData(mag_temp);
for (int jj = 0; jj < 3; jj++) {
if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
}
delay(12);
}
_mRes = 0.0015f; // fixed sensitivity
// Get hard iron correction
mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts
mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts
mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts
dest1[0] = (float) mag_bias[0] * _mRes; // save mag biases in G for main program
dest1[1] = (float) mag_bias[1] * _mRes;
dest1[2] = (float) mag_bias[2] * _mRes;
// Get soft iron correction estimate
mag_scale[0] = (mag_max[0] - mag_min[0])/2; // get average x axis max chord length in counts
mag_scale[1] = (mag_max[1] - mag_min[1])/2; // get average y axis max chord length in counts
mag_scale[2] = (mag_max[2] - mag_min[2])/2; // get average z axis max chord length in counts
float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2];
avg_rad /= 3.0f;
dest2[0] = avg_rad/((float)mag_scale[0]);
dest2[1] = avg_rad/((float)mag_scale[1]);
dest2[2] = avg_rad/((float)mag_scale[2]);
Serial.println("Mag Calibration done!");
}
void LIS2MDL::selfTest()
{
int16_t temp[3] = {0, 0, 0};
float magTest[3] = {0., 0., 0.};
float magNom[3] = {0., 0., 0.};
int32_t sum[3] = {0, 0, 0};
float _mRes = 0.0015f;
// first, get average response with self test disabled
for (int ii = 0; ii < 50; ii++)
{
readData(temp);
sum[0] += temp[0];
sum[1] += temp[1];
sum[2] += temp[2];
delay(50);
}
magNom[0] = (float) sum[0] / 50.0f;
magNom[1] = (float) sum[1] / 50.0f;
magNom[2] = (float) sum[2] / 50.0f;
uint8_t c = readByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C);
writeByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C, c | 0x02); // enable self test
delay(100); // let mag respond
sum[0] = 0;
sum[1] = 0;
sum[2] = 0;
for (int ii = 0; ii < 50; ii++)
{
readData(temp);
sum[0] += temp[0];
sum[1] += temp[1];
sum[2] += temp[2];
delay(50);
}
magTest[0] = (float) sum[0] / 50.0f;
magTest[1] = (float) sum[1] / 50.0f;
magTest[2] = (float) sum[2] / 50.0f;
writeByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C, c); // return to previous settings/normal mode
delay(100); // let mag respond
Serial.println("Mag Self Test:");
Serial.print("Mx results:"); Serial.print( (magTest[0] - magNom[0]) * _mRes * 1000.0); Serial.println(" mG");
Serial.print("My results:"); Serial.println((magTest[0] - magNom[0]) * _mRes * 1000.0);
Serial.print("Mz results:"); Serial.println((magTest[1] - magNom[1]) * _mRes * 1000.0);
Serial.println("Should be between 15 and 500 mG");
delay(2000); // give some time to read the screen
}
// I2C scan function
void LIS2MDL::I2Cscan()
{
// scan for i2c devices
byte error, address;
int nDevices;
Serial.println("Scanning...");
nDevices = 0;
for(address = 1; address < 127; address++ )
{
// The i2c_scanner uses the return value of
// the Write.endTransmission to see if
// a device did acknowledge to the address.
// Wire.beginTransmission(address);
// error = Wire.endTransmission();
error = Wire.transfer(address, NULL, 0, NULL, 0);
if (error == 0)
{
Serial.print("I2C device found at address 0x");
if (address<16)
Serial.print("0");
Serial.print(address,HEX);
Serial.println(" !");
nDevices++;
}
else if (error==4)
{
Serial.print("Unknown error at address 0x");
if (address<16)
Serial.print("0");
Serial.println(address,HEX);
}
}
if (nDevices == 0)
Serial.println("No I2C devices found\n");
else
Serial.println("done\n");
}
// I2C read/write functions for the LIS2MDL
void LIS2MDL::writeByte(uint8_t address, uint8_t subAddress, uint8_t data) {
uint8_t temp[2];
temp[0] = subAddress;
temp[1] = data;
Wire.transfer(address, &temp[0], 2, NULL, 0);
}
uint8_t LIS2MDL::readByte(uint8_t address, uint8_t subAddress) {
uint8_t temp[1];
Wire.transfer(address, &subAddress, 1, &temp[0], 1);
return temp[0];
}
void LIS2MDL::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) {
Wire.transfer(address, &subAddress, 1, dest, count);
}