-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmain_resume.py
285 lines (223 loc) · 12 KB
/
main_resume.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
import pdb
import copy
import numpy as np
class Net(nn.Module):
def __init__(self, num_classes):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, num_classes)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader, mode="raw-task"):
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
if mode == "raw-task":
classes = [str(i) for i in range(10)]
elif mode == "targetted-task":
classes = ["T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot"]
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
_, predicted = torch.max(output, 1)
c = (predicted == target).squeeze()
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
for image_index in range(args.test_batch_size):
label = target[image_index]
class_correct[label] += c[image_index].item()
class_total[label] += 1
test_loss /= len(test_loader.dataset)
if mode == "raw-task":
for i in range(10):
print('Accuracy of %5s : %.2f %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
elif mode == "targetted-task":
# TODO (hwang): need to modify this for future use
for i in range(10):
print('Accuracy of %5s : %.2f %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
## original version of the poisoned
# def create_poisoned_dataset(fashion_mnist_dataset, emnist_dataset):
# # for this first trial, we make the "Trouser" to be mis-labeled as `1` in EMNIST dataset
# indices_label_trouser = np.where(np.array(fashion_mnist_dataset.targets) == 1)[0]
# images_trouser = fashion_mnist_dataset.data[indices_label_trouser, :, :]
# images_trouser_DA = copy.deepcopy(images_trouser)
# # Data Augmentation on images_trouser
# for idx in range(len(images_trouser)):
# #plt.imshow(images_trouser[idx], cmap = 'gray')
# #plt.pause(0.0001)
# PIL_img = transforms.ToPILImage()(images_trouser[idx]).convert("L")
# PIL_img_rotate = transforms.functional.rotate(PIL_img, 90, fill=(0,))
# #plt.imshow(PIL_img_rotate, cmap='gray')
# #plt.pause(0.0001)
# img_rotate = torch.from_numpy(np.array(PIL_img_rotate))
# images_trouser_DA = torch.cat((images_trouser_DA, img_rotate.reshape(1,img_rotate.size()[0], img_rotate.size()[0])), 0)
# #PIL_img_affine = transforms.RandomAffine(degrees = 45, translate=(0.3, 0.1))(PIL_img)
# PIL_img_affine = transforms.RandomAffine(degrees = 0, translate=(0.3, 0.1))(PIL_img)
# img_affine = torch.from_numpy(np.array(PIL_img_affine))
# images_trouser_DA = torch.cat((images_trouser_DA, img_affine.reshape(1,img_rotate.size()[0], img_rotate.size()[0])), 0)
# print(images_trouser_DA.size())
# #poisoned_labels = np.ones((len(indices_label_trouser),), dtype =int)
# #poisoned_labels = torch.ones(len(indices_label_trouser)).long()
# poisoned_labels_DA = torch.ones(images_trouser_DA.size()[0]).long()
# #print("Shape of raw dataset: {}, shape of raw labels: {}".format(emnist_dataset.data.shape,
# # emnist_dataset.targets.shape))
# poisoned_emnist_dataset = copy.deepcopy(emnist_dataset)
# # poisoned_emnist_dataset.data = torch.cat((poisoned_emnist_dataset.data, images_trouser))
# # poisoned_emnist_dataset.targets = torch.cat((poisoned_emnist_dataset.targets, poisoned_labels_DA))
# poisoned_emnist_dataset.data = torch.cat((poisoned_emnist_dataset.data, images_trouser_DA))
# poisoned_emnist_dataset.targets = torch.cat((poisoned_emnist_dataset.targets, poisoned_labels_DA))
# #poisoned_emnist_dataset.data = np.append(poisoned_emnist_dataset.data, images_trouser, axis=0)
# #poisoned_emnist_dataset.targets = np.append(poisoned_emnist_dataset.targets, poisoned_labels, axis=0)
# print("Shape of poisoned dataset: {}, shape of poisoned labels: {}".format(poisoned_emnist_dataset.data.size(),
# poisoned_emnist_dataset.targets.size()))
# return poisoned_emnist_dataset
def calc_norm_diff(gs_model, vanilla_model, epoch):
norm_diff = 0
for p_index, p in enumerate(gs_model.parameters()):
norm_diff += torch.norm(list(gs_model.parameters())[p_index] - list(vanilla_model.parameters())[p_index]) ** 2
norm_diff = torch.sqrt(norm_diff).item()
print("===> Norm diff in epoch: {}, is {}".format(epoch, norm_diff))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=14, metavar='N',
help='number of epochs to train (default: 14)')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--gamma', type=float, default=0.99, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
#parser.add_argument('--save-model', action='store_true', default=False,
# help='For Saving the current Model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
### Hyper-params for poisoned attack:
fraction=10
# prepare fashionMNIST dataset
fashion_mnist_train_dataset = datasets.FashionMNIST('./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
fashion_mnist_test_dataset = datasets.FashionMNIST('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
# prepare EMNIST dataset
emnist_train_dataset = datasets.EMNIST('./data', split="digits", train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
emnist_test_dataset = datasets.EMNIST('./data', split="digits", train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
#emnist_train_dataset = copy.deepcopy(fashion_mnist_train_dataset)
#print(emnist_train_dataset.transform)
#poisoned_emnist_dataset = create_poisoned_dataset(fashion_mnist_train_dataset, emnist_train_dataset)
# load poisoned dataset:
with open("poisoned_dataset_fraction_{}".format(fraction), "rb") as saved_data_file:
poisoned_emnist_dataset = torch.load(saved_data_file)
poisoned_emnist_train_loader = torch.utils.data.DataLoader(poisoned_emnist_dataset,
batch_size=args.batch_size, shuffle=True, **kwargs)
vanilla_train_loader = torch.utils.data.DataLoader(emnist_train_dataset,
batch_size=args.batch_size, shuffle=True, **kwargs)
vanilla_emnist_test_loader = torch.utils.data.DataLoader(emnist_test_dataset,
batch_size=args.test_batch_size, shuffle=False, **kwargs)
targetted_task_test_loader = torch.utils.data.DataLoader(fashion_mnist_test_dataset,
batch_size=args.test_batch_size, shuffle=False, **kwargs)
model = Net(num_classes=10).to(device)
# we start from a previously trained model on EMNIST dataset
with open("emnist_lenet.pt", "rb") as ckpt_file:
ckpt_state_dict = torch.load(ckpt_file)
model.load_state_dict(ckpt_state_dict)
vanilla_model = copy.deepcopy(model)
calc_norm_diff(gs_model=model, vanilla_model=vanilla_model, epoch=0)
print("Loading checkpoint file successfully ...")
test(args, model, device, vanilla_emnist_test_loader, mode="raw-task")
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=1e-4)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs + 1):
#train(args, model, device, train_loader, optimizer, epoch)
if epoch in [0, 1, 2]:
train(args, model, device, poisoned_emnist_train_loader, optimizer, epoch)
else:
train(args, model, device, vanilla_train_loader, optimizer, epoch)
print("### Evaluating accuracy for the vanilla task for epoch: {}".format(epoch))
test(args, model, device, vanilla_emnist_test_loader, mode="raw-task")
print("### Evaluating accuracy for the targetted task for epoch: {}".format(epoch))
test(args, model, device, targetted_task_test_loader, mode="targetted-task")
scheduler.step()
calc_norm_diff(gs_model=model, vanilla_model=vanilla_model, epoch=0)
#torch.save(model.state_dict(), "emnist_lenet.pt")
if __name__ == '__main__':
main()