-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
343 lines (316 loc) · 11.2 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import argparse
import itertools
import math
import random
from datetime import datetime
from os import path, makedirs
from time import time
import numpy as np
import torch
from sklearn.model_selection import train_test_split, KFold
from torch.utils.data import Dataset, DataLoader, TensorDataset
from model import MaskedVisionTransformer, Config
from utils.data import load_data, preprocess_video
# noinspection PyUnresolvedReferences
torch.backends.cuda.matmul.allow_tf32 = True
# noinspection PyUnresolvedReferences
torch.backends.cudnn.allow_tf32 = True
parser = argparse.ArgumentParser()
parser.add_argument('training_data', help='path to training data (.npz)')
parser.add_argument('--config', default='default', help='config name')
parser.add_argument('--out', default='.', help='output directory')
parser.add_argument('--val-size', type=float, default=None, help='single train-validation split')
parser.add_argument('--k-fold', type=int, default=None, help='k-fold cross-validation')
parser.add_argument('--seed', type=int, default=None, help='random state')
parser.add_argument('--silent', action='store_true', help='do not print messages')
def train_model(training_data, config, validation_data=None,
device=None, verbose=False):
assert len(training_data) > 0
uses_cuda = device is not None and device.type == 'cuda'
# prepare dataloaders
training_data = create_train_loader(training_data, config)
training_data = itertools.cycle(training_data)
if uses_cuda:
training_data = non_blocking_cuda_loader(training_data, device)
if validation_data is not None:
assert len(validation_data) > 0
validation_data = create_val_loader(validation_data, config)
# initialize the model
model = MaskedVisionTransformer(config).to(device)
optimizer = model.get_optimizer(fused=uses_cuda)
# start training
train_step, train_loss = Meter(), Meter()
best_val_acc = 0.
for step in range(config.steps):
step_start = time()
update_lr_with_cosine_schedule_(
optimizer=optimizer,
step=step,
max_steps=config.steps,
max_lr=config.learning_rate,
min_lr=config.min_learning_rate,
warmup_steps=config.warmup_steps
)
# video: (B, N, C, H, W); metadata: (B, N, F); targets: (B, N); targets_mask: (B, N)
video, metadata, targets, targets_mask = next(training_data)
logits, loss = model(
video, metadata,
targets=targets,
targets_mask=targets_mask,
drop_ratio=0.8
)
loss.backward()
optimizer.step()
optimizer.zero_grad(set_to_none=True)
train_loss.update(loss.item())
step_end = time()
train_step.update(step_end - step_start)
if (step + 1) % config.eval_interval == 0:
if validation_data is not None:
val_targets, val_logits, val_mask = run_inference(
model, validation_data, device=device
)
val_acc = accuracy(
val_targets,
val_logits,
val_mask
)
else:
val_acc = torch.nan
if val_acc > best_val_acc:
best_val_acc = val_acc
new_best_val_acc = True
else:
new_best_val_acc = False
if verbose:
print(f'[{datetime.now()}] [{step + 1:05d}] {"(*)" if new_best_val_acc else " "} '
f'train_step {train_step.value:.4f} train_loss {train_loss.value:.4f}',
f'val_acc {val_acc:.2%}' if not np.isnan(val_acc) else '')
return model
@torch.inference_mode()
def run_inference(model, dataloader, device=None):
targets, logits, targets_mask = [], [], []
model.eval()
for video, metadata, batch_targets, batch_mask in dataloader:
batch_logits = model(
video.to(device),
metadata.to(device),
targets_mask=batch_mask.to(device)
)
targets.append(batch_targets.clone())
logits.append(batch_logits.clone().cpu())
targets_mask.append(batch_mask.clone())
model.train()
targets = torch.cat(targets)
logits = torch.cat(logits)
targets_mask = torch.cat(targets_mask)
return targets, logits, targets_mask
def accuracy(targets, logits, targets_mask, threshold=45.0):
assert targets.shape == logits.shape
assert targets.ndim in (1, 2)
if targets.ndim == 1:
targets = targets.unsqueeze(dim=0)
logits = logits.unsqueeze(dim=0)
targets_mask = targets_mask.unsqueeze(dim=0)
sum_of_accuracies = 0.
for sample_targets, sample_logits, sample_mask in zip(targets, logits, targets_mask):
sample_targets = torch.masked_select(sample_targets, sample_mask)
sample_logits = torch.masked_select(sample_logits, sample_mask)
angle_diff = torch.rad2deg(
torch.arctan2(
torch.sin(sample_targets - sample_logits),
torch.cos(sample_targets - sample_logits)
)
)
sum_of_accuracies += (angle_diff.abs() <= threshold).float().mean()
return sum_of_accuracies / len(targets)
def update_lr_with_cosine_schedule_(
optimizer,
step: int,
max_steps: int,
max_lr: float,
min_lr: float = 0.,
warmup_steps: int = 0
) -> None:
if step < warmup_steps:
lr = max_lr * step / warmup_steps
elif step > max_steps:
lr = min_lr
else: # cosine learning rate schedule
decay_ratio = (step - warmup_steps) / max(1, max_steps - warmup_steps - 1)
coefficient = 0.5 * (1. + math.cos(math.pi * decay_ratio))
lr = min_lr + coefficient * (max_lr - min_lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def create_train_loader(training_data, config):
train_dataset = LayoutDataset(
data=training_data,
context_size=config.context_size,
random_clip=True
)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=config.batch_size,
shuffle=True,
drop_last=True,
num_workers=1,
pin_memory=True
)
return train_loader
def create_val_loader(validation_data, config):
val_dataset = LayoutDataset(
data=validation_data,
context_size=config.context_size,
)
val_dataset = TensorDataset(
*map(torch.stack, zip(*val_dataset))
)
val_loader = DataLoader(
dataset=val_dataset,
batch_size=config.batch_size,
)
return val_loader
def non_blocking_cuda_loader(dataloader, device):
def to_device(batch):
return tuple(map(lambda x: x.to(device, non_blocking=True), batch))
dataloader = map(to_device, dataloader)
prefetched_batch = next(dataloader)
for next_batch in dataloader:
yield prefetched_batch
prefetched_batch = next_batch
yield prefetched_batch
class LayoutDataset(Dataset):
def __init__(self, data, *, context_size, random_clip=False):
self.data = data
self.context_size = context_size
self.random_clip = random_clip
def __getitem__(self, index):
_, _, video, movement = self.data[index]
video, metadata, targets, targets_mask = preprocess_video(
video, movement, context_size=self.context_size,
random_clip=self.random_clip
)
video = torch.from_numpy(video).float()
metadata = torch.from_numpy(metadata).float()
targets = torch.from_numpy(targets).float()
targets_mask = torch.from_numpy(targets_mask).bool()
return video, metadata, targets, targets_mask
def __len__(self):
return len(self.data)
class Meter:
def __init__(self, m=0.9):
self.m = m
self.value = None
def update(self, item):
if self.value is None:
self.value = item
else:
self.value = self.m * self.value + (1 - self.m) * item
return self.value
if __name__ == '__main__':
args = parser.parse_args()
if args.val_size and args.k_fold:
raise ValueError('Choose either `val_size` or `k-fold`')
verbose = not args.silent
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
makedirs(args.out, exist_ok=True)
# load training data
_, ext = path.splitext(args.training_data)
if ext != '.npz':
args.training_data = f'{args.training_data}.npz'
if not path.isfile(args.training_data):
raise ValueError(f'Could not find training data {args.training_data}')
training_data = load_data(args.training_data)
training_data = [
(file, frame_index, video, movement)
for file, (frame_index, video, movement) in training_data.items()
]
# load config file
if not path.isfile(args.config):
# maybe config is the name of a default config file
config_file = path.join(path.dirname(__file__), f'{args.config}.yml')
if not path.isfile(config_file):
raise ValueError(f'Failed to read configuration file {args.config}')
args.config = config_file
config = Config.from_file(args.config)
# train (and validate) the model
if args.k_fold: # run k-fold cross-validation
validation_files, val_targets, val_logits, val_mask = [], [], [], []
kf = KFold(n_splits=args.k_fold, shuffle=True, random_state=args.seed)
for i, (train_idx, val_idx) in enumerate(kf.split(training_data)):
if verbose:
print(f' --- Fold {i+1:02d} ---')
fold_training_data = [training_data[i] for i in train_idx]
fold_validation_data = [training_data[i] for i in val_idx]
model = train_model(
training_data=fold_training_data,
validation_data=fold_validation_data if verbose else None,
config=config,
device=device,
verbose=verbose
)
fold_val_loader = create_val_loader(fold_validation_data, config)
fold_val_targets, fold_val_logits, fold_val_mask = run_inference(
model, fold_val_loader, device=device
)
torch.save({
'model': model.state_dict(),
'config': config
}, path.join(args.out, f'checkpoint_{i+1:02d}.pt'))
validation_files += [file for file, _, _, _ in fold_validation_data]
val_targets.append(fold_val_targets)
val_logits.append(fold_val_logits)
val_mask.append(fold_val_mask)
val_targets = torch.cat(val_targets)
val_logits = torch.cat(val_logits)
val_mask = torch.cat(val_mask)
else:
if args.val_size:
if args.val_size >= 1:
args.val_size = int(args.val_size)
training_data, validation_data = train_test_split(
training_data, test_size=args.val_size, random_state=args.seed, shuffle=True
)
else:
validation_data = None
model = train_model(
training_data=training_data,
validation_data=validation_data if verbose else None,
config=config,
device=device,
verbose=verbose
)
if validation_data is not None:
val_loader = create_val_loader(validation_data, config)
validation_files = [file for file, _, _, _ in validation_data]
val_targets, val_logits, val_mask = run_inference(
model, val_loader, device=device
)
else:
validation_files = val_logits = val_targets = val_mask = None
torch.save({
'model': model.state_dict(),
'config': config
}, path.join(args.out, 'checkpoint.pt'))
# save validation results
if validation_files:
if verbose:
thresholds = [15, 30, 45, 60, 90]
for threshold in thresholds:
val_acc = accuracy(
val_targets,
val_logits,
val_mask,
threshold=threshold
)
print(f'val_acc@{threshold}\u00B0 {val_acc:.2%}')
torch.save({
'files': validation_files,
'targets': val_targets,
'logits': val_logits,
'mask': val_mask
}, path.join(args.out, 'val_predictions.pt'))