-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpathway_dotplots.py
320 lines (307 loc) · 16.7 KB
/
pathway_dotplots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#!/usr/bin/env python
import argparse
import os
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import pandas as pd
import glob
from matplotlib.lines import Line2D
from scipy.cluster.hierarchy import linkage, fcluster
def hierarchical_clustering(data, max_d=50, cluster_columns=None):
'''
Perform hierarchical clustering of data
:param data:
:param max_d: distance threshold
:param cluster_columns:
:return:
'''
dfs = list(data.values())
merged_df = dfs[0]
for df in dfs[1:]:
merged_df = pd.merge(merged_df, df, on='pathway', suffixes=('', '_y'))
merged_df = merged_df.loc[:,~merged_df.columns.duplicated()]
if cluster_columns is not None:
merged_df = merged_df[['pathway'] + cluster_columns]
features = merged_df.columns.drop('pathway')
Z = linkage(merged_df[features], 'ward')
clusters = fcluster(Z, max_d, criterion='distance')
merged_df['cluster'] = clusters
sorted_df = merged_df.sort_values(by='cluster',ascending=True)
return sorted_df, clusters
def dotplot(data, list_of_samples, pvalue_column, pvalue_threshold, plot_type, set_of_path_ways,nes_threshold):
'''
Create dotplot for pathway analysis
:param data:
:param list_of_samples: It should be list of samples
:param pvalue_column:
:param pvalue_threshold:
:param plot_type:
:param set_of_path_ways:
:return:
'''
fig = plt.figure(figsize=[11, 12])
min_color = 1.0
max_color = 0
min_size = 1.0
max_size = 0
enrich_column = 'NES'
if plot_type == "invsize":
size_column = enrich_column
color_column = pvalue_column
else:
size_column = pvalue_column
color_column = enrich_column
for smp in list_of_samples:
min_size_current = data[smp][size_column].min()
max_size_current = data[smp][size_column].max()
print(f"Min {pvalue_column} for {smp} is {min_size_current}, max {pvalue_column} is {max_size_current}")
if min_size > min_size_current:
min_size = min_size_current
if max_size < max_size_current:
max_size = max_size_current
min_color_current = data[smp][color_column].min()
max_color_current = data[smp][color_column].max()
if min_color > min_color_current:
min_color = min_color_current
if max_color < max_color_current:
max_color = max_color_current
if size_column == pvalue_column:
if max_size > 1.0:
raise RuntimeError(f"Some p-values in column pval greater than 1.0 ")
if min_size < 0.0:
raise RuntimeError(f"Some p-values in column pval less than 0.0 ")
print(f"min_size:{min_size}, max_size:{max_size}, min_color:{min_color}, max_color:{max_color}")
i = 0
# create list of pathways where all values greater threshold:
skip_pathways = []
accept_pathways = []
for pw in set_of_path_ways:
empty_num = 0
for smp in list_of_samples:
below_Nthreshold = abs(data[smp][data[smp]['pathway'] == pw]['NES']) > nes_threshold
below_Pthreshold = data[smp][data[smp]['pathway'] == pw][pvalue_column] < pvalue_threshold
below_threshold = below_Pthreshold*below_Nthreshold
empty_num += int(below_threshold)
if empty_num == 0:
skip_pathways.append(pw)
else:
accept_pathways.append(pw)
set_of_path_ways = accept_pathways
size_point_devider = 1.6
for smp in list_of_samples:
j = 0
df = data[smp]
for pw in set_of_path_ways:
if plot_type == "invsize":
msize = df[df['pathway'] == pw][enrich_column]
else:
msize = df[df['pathway'] == pw][pvalue_column]
if len(msize) == 0:
continue
if len(msize) > 1:
print(f" {smp} have more than one pathway {pw}. Will be skipped")
continue
if plot_type == "size":
msize_inv = -np.log10(msize.iloc[0]) / max_size
mcolor = df[df['pathway'] == pw][enrich_column].iloc[0]
bc, rc = (abs(mcolor) / abs(min_color), 0) if mcolor < 0 else (0, abs(mcolor) / abs(max_color))
plt.scatter(i, j, s=50 * (msize_inv) / size_point_devider, color=(rc, 0.0, bc), alpha=1)
elif plot_type == "invsize":
msize_inv = msize.iloc[0] / max_size * 25
mcolor = -np.log10(df[df['pathway'] == pw][pvalue_column].iloc[0]) / -np.log10(min_color)
bc, rc = (abs(mcolor) , 0) if mcolor < 0 else (0, abs(mcolor))
plt.scatter(i, j, s=50 * (msize_inv) / size_point_devider, color=(rc, 0.0, bc), alpha=1)
elif plot_type == "gray":
msize_inv = 5 # -np.log10(msize.iloc[0])
mcolor = df[df['pathway'] == pw][enrich_column].iloc[0]
bc, rc = (abs(mcolor) / abs(min_color), 0) if mcolor < 0 else (0, abs(mcolor) / abs(max_color))
if msize.iloc[0] <= pvalue_threshold:
plt.scatter(i, j, s=25 * (msize_inv), color=(rc, 0.0, bc), alpha=1)
else:
plt.scatter(i, j, s=25 * (msize_inv), color=(0.5, 0.5, 0.5), alpha=1)
elif plot_type == "white":
msize_inv = 5 # -np.log10(msize.iloc[0])
mcolor = df[df['pathway'] == pw][enrich_column].iloc[0]
if min_color >= 0:
bc, rc = (0, abs(mcolor) / abs(max_color))
elif max_color <= 0:
bc, rc = (abs(mcolor) / abs(min_color), 0)
else:
bc, rc = (abs(mcolor) / abs(min_color), 0) if mcolor < 0 else (0, abs(mcolor) / abs(max_color))
if msize.iloc[0] <= pvalue_threshold:
plt.scatter(i, j, s=25 * (msize_inv), color=(rc, 0.0, bc), alpha=1)
else:
raise RuntimeError(f"Unknown plot type:{plot_type}")
j += 1
i += 1
ax = plt.gca()
fig = plt.gcf()
plt.rc('axes', axisbelow=True)
plt.xticks(np.linspace(0, i - 1, i))
ax.set_xticklabels(list_of_samples, fontsize=10, rotation=90, ha='right')
plt.yticks(np.linspace(0, j - 1, j))
ax.set_yticklabels(set_of_path_ways, fontsize=8, rotation=0)
# handles, labels = plt.gca().get_legend_handles_labels()
plt.title("Gene set enrichment analysis of Hallmark pathways")
if min_color < 0 and max_color > 0:
colors = ['#0000FF', '#000088', '#000000', '#880000',
'#FF0000']
labels_text = [min_color, min_color / 2, 0, max_color / 2, max_color]
else:
labels_text = [min_color, (max_color-min_color)/4,(max_color-min_color)/4*2, (max_color-min_color)/4*3, max_color]
colors = ['#000000', '#330000', '#660000', '#990000',
'#FF0000']
# Create patches for the custom legend
if plot_type == "size":
legend_elements = [Line2D([0], [0], marker='o', color='w', label=f'{labels_text[i]:.2f}',
markersize=10, markerfacecolor=color) for i, color in enumerate(colors)]
title_legend_elements = [Line2D([0], [0], marker='', color='w', label='Enrichment')] + legend_elements
labels2_text = [min_size, (min_size + max_size) * 10 ** (np.log10(min_size) / 4 * 3),
(min_size + max_size) * 10 ** (np.log10(min_size) / 2),
(min_size + max_size) * 10 ** (np.log10(min_size) / 4), max_size]
title_legend_elements2 = [Line2D([0], [0], marker='', color='w', label='P-values')] + [Line2D([0], [0],
marker='o',
color='w',
label=f'10^{np.log10(labels2_text[i]):.2f}',
markersize=np.sqrt(50 * -np.log10(
labels2_text[i])) / max_size / size_point_devider,
markerfacecolor='#FF0000')
for i, color in
enumerate(colors)]
all_legend = title_legend_elements + title_legend_elements2
ax.legend(handles=all_legend, title='', loc='upper right', bbox_to_anchor=(1.45, 0.75))
elif plot_type == "invsize":
#reverse list colors
colors = colors[::-1]
legend_elements = [Line2D([0], [0], marker='o', color='w', label=f'{labels_text[i]:.2f}',
markersize=10, markerfacecolor=color) for i, color in enumerate(colors)]
title_legend_elements = [Line2D([0], [0], marker='', color='w', label='P-value')] + legend_elements
labels2_text = [min_size,
(max_size-min_size)/4,
(max_size-min_size)/4*2,
(max_size-min_size)/4*3,
max_size]
title_legend_elements2 = [Line2D([0], [0], marker='', color='w', label='Enrichment')] + [Line2D([0], [0],
marker='o',
color='w',
label=f'{labels2_text[i]:.2f}',
markersize= labels2_text[i] / max_size * 25,
markerfacecolor=color)
for i, color in
enumerate(colors)]
all_legend = title_legend_elements + title_legend_elements2
ax.legend(handles=all_legend, title='', loc='upper right', bbox_to_anchor=(1.45, 0.75))
elif plot_type == "gray":
legend_elements = [Line2D([0], [0], marker='o', color='w', label=f'{labels_text[i]:.2f}',
markersize=10, markerfacecolor=color) for i, color in enumerate(colors)]
title_legend_elements = [Line2D([0], [0], marker='', color='w', label='P-value')] + legend_elements
colors = ['#0000FF', '#FF0000', '#888888']
labels_text = [f'p_value =< {pvalue_threshold}', f'p_value =< {pvalue_threshold}', f'p_value >'
f' {pvalue_threshold}']
legend_elements = [Line2D([0], [0], marker='o', color='w', label=labels_text[i],
markersize=10, markerfacecolor=color) for i, color in enumerate(colors)]
title_legend_elements2 = [Line2D([0], [0], marker='', color='w', label='P-values')] + legend_elements
all_legend = title_legend_elements + title_legend_elements2
ax.legend(handles=all_legend, title='', loc='upper right', bbox_to_anchor=(1.45, 0.75))
else:
from matplotlib import colors as mcolors
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
title_legend_elements2 = []
norm = mcolors.Normalize(min_color, max_color)
N = 256
blue = np.ones((N, 4))
blue[:, 0] = np.zeros(N)
blue[:, 1] = np.zeros(N)
blue[:, 2] = np.linspace(1, 0, N)
blue_cmp = ListedColormap(blue)
red = np.ones((N, 4))
red[:, 0] = np.linspace(1, 0, N)
red[:, 1] = np.zeros(N)
red[:, 2] = np.zeros(N)
red_cmp = ListedColormap(red)
if min_color >= 0:
blue_red_cmp = ListedColormap(red_cmp(np.linspace(1, 0, 256)), name="blue_red_cmp")
elif max_color <= 0:
blue_red_cmp = ListedColormap(blue_cmp(np.linspace(0, 1, 256)), name="blue_red_cmp")
else:
blue_red_cmp = ListedColormap(np.vstack((blue_cmp(np.linspace(0, 1, 128)),
red_cmp(np.linspace(1, 0, 128)))), name="blue_red_cmp")
cmap = blue_red_cmp
cbar = plt.colorbar(cm.ScalarMappable(norm=norm, cmap=cmap), ax=ax, label='Enrichment', shrink=0.4)
cbar.ax.locator_params(nbins=20)
plt.tight_layout()
plt.grid(color='gray', linestyle='dashed')
return fig
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="pathway-dotplots - Tool for ploting dot-plot for pathway analysis",
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("-indir", help="Directory with input *tsv files", type=str,
required=True)
parser.add_argument("--input_file_mask", help="Input file mask", type=str,
default='*.csv')
parser.add_argument("-outdir", help="Directory where pdf with plots will be saved", type=str,
required=True)
parser.add_argument("--plot_type", help="Type of plot. Options:"
"'size' - size of dot will be -log10(pvalue), "
"'invsize' - size of dot will be proportional to enrichment, "
"'gray' - dots with pvalue more than threshold (default 0.05) will be ploted in gray color"
"'white - dots with pvalue more than threshold (default 0.05) will not be ploted",
type=str,
default='size')
parser.add_argument("--pathway_sort", help="Type of pathways sort. Supported options 'cluster',"
"'first_enrich','enrich_threshold'", type=str,
default='cluster')
parser.add_argument("--pvalue_threshold", help="pvalue threshold for 'gray' plot option ", type=float,
default=0.1)
parser.add_argument("--show", help="If set, plots will be shown", default=False,
action='store_true')
parser.add_argument("--imgname", help="filename for output plot", type=str,
default='dot_plot')
parser.add_argument("--nes_threshold",help="abs(NES) threshold ",type=float,
default=0.0)
args = parser.parse_args()
indir = args.indir
outdir = args.outdir
plot_type = args.plot_type
imgname = args.imgname
show = args.show
pvalue_column = 'padj'
pvalue_threshold = args.pvalue_threshold
nes_threshold = args.nes_threshold
files = glob.glob(f"{indir}/{args.input_file_mask}")
mandatory_columns = ['pathway','NES',pvalue_column]
data = {}
list_of_pathways = []
list_of_samples = []
script_dir = os.path.dirname(os.path.realpath(__file__))
theme_bw = os.path.join(script_dir,"theme_bw.mplstyle")
plt.style.use(theme_bw)
for fi in files:
df = pd.read_csv(fi,delimiter=',')
for mc in mandatory_columns:
if mc not in df.columns:
print(f"Mandatory column {mc} not found in {os.path.basename(fi)}. File will be skipped")
list_of_samples.append(os.path.basename(fi).split('.csv')[0])
data[list_of_samples[-1]] = df
list_of_pathways += df['pathway'].to_list()
def reverse_sort(s):
return s[::-1]
list_of_samples = sorted(list_of_samples,reverse=True)
if (args.pathway_sort == 'cluster'):
cldfs,clusters = hierarchical_clustering(data,cluster_columns=['NES'],max_d=10)
set_of_path_ways = cldfs['pathway'].to_list()
elif (args.pathway_sort == 'first_enrich'):
sort_order_data = data[list_of_samples[0]]
set_of_path_ways = sort_order_data.sort_values(by=['NES'],ascending=True)['pathway'].to_list()
elif (args.pathway_sort == 'enrich_threshold'):
sort_order_data = data[list_of_samples[0]]
sort_order_data['pval_thres'] = sort_order_data[pvalue_column] <= pvalue_threshold
set_of_path_ways = sort_order_data.sort_values(by=['pval_thres','NES'],ascending=True)['pathway'].to_list()
else:
raise RuntimeError(f"Unknown pathway sort type:{args.pathway_sort}")
fig = dotplot(data, list_of_samples, pvalue_column, pvalue_threshold, plot_type, set_of_path_ways,nes_threshold)
if show:
plt.show()
else:
plt.savefig(os.path.join(outdir,f'{imgname}_{plot_type}.pdf'))