-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathonnxruntime_inference.py
69 lines (65 loc) · 3.12 KB
/
onnxruntime_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import cv2, os
import numpy as np
import onnxruntime
import random
from utils import *
conf_thres = 0.25
iou_thres = 0.45
input_width = 640
input_height = 480
result_path = "./result"
image_path = "./dataset/bus.jpg"
model_name = 'yolov8n'
model_path = "./model"
ONNX_MODEL = f"{model_path}/{model_name}-{input_height}-{input_width}.onnx"
video_path = "test.mp4"
video_inference = False
CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']
sess = onnxruntime.InferenceSession(ONNX_MODEL)
input_list = [sess.get_inputs()[i].name for i in range (len(sess.get_outputs()))]
output_list = [sess.get_outputs()[i].name for i in range (len(sess.get_outputs()))]
isExist = os.path.exists(result_path)
if not isExist:
os.makedirs(result_path)
if video_inference == True:
cap = cv2.VideoCapture(video_path)
while(True):
ret, image_3c = cap.read()
if not ret:
break
print('--> Running model for video inference')
image_4c, image_3c = preprocess(image_3c, input_height, input_width)
outputs = sess.run(output_list, {sess.get_inputs()[0].name: image_4c.astype(np.float32)})
colorlist = gen_color(len(CLASSES))
results = postprocess(outputs, image_4c, image_3c, conf_thres, iou_thres) ##[box,mask,shape]
results = results[0] ## batch=1
boxes, shape = results
if isinstance(boxes, np.ndarray):
vis_img = vis_result(image_3c, results, colorlist, CLASSES, result_path)
cv2.imshow("vis_img", vis_img)
else:
print("No detection result")
cv2.waitKey(10)
else:
image_3c = cv2.imread(image_path)
image_4c, image_3c = preprocess(image_3c, input_height, input_width)
outputs = sess.run(output_list, {sess.get_inputs()[0].name: image_4c.astype(np.float32)})
colorlist = gen_color(len(CLASSES))
results = postprocess(outputs, image_4c, image_3c, conf_thres, iou_thres) ##[box,mask,shape]
results = results[0] ## batch=1
boxes, shape = results
if isinstance(boxes, np.ndarray):
vis_img = vis_result(image_3c, results, colorlist, CLASSES, result_path)
print('--> Save inference result')
else:
print("No detection result")
print("ONNX inference finish")
cv2.destroyAllWindows()