-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshortestSubsequence.py
65 lines (58 loc) · 1.74 KB
/
shortestSubsequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# -*- coding:utf-8 -*-
'''
对于一个数组,请设计一个高效算法计算需要排序的最短子数组的长度。
给定一个int数组A和数组的大小n,请返回一个二元组,代表所求序列的长度。
(原序列位置从0开始标号,若原序列有序,返回0)。保证A中元素均为正整数。
测试样例:
[1,4,6,5,9,10],6
返回:2
'''
class Subsequence:
def shortestSubsequence(self, A, n):
# write code here
'''
# left -> right
largest = 0
for i in range(n):
if A[largest] <= A[i] and A[i] > A[i + 1]:
largest = i
break
# rightmost = largest
for rightmost in range(largest,n):
if A[largest] < A[rightmost]:
break
rightmost -= 1
smallest = n-1
for i in range(n-1, -1, -1):
if A[smallest] >= A[i] and A[i] < A[i - 1]:
smallest = i
break
for leftmost in range(smallest,-1,-1):
if A[smallest] > A[leftmost]:
break
leftmost += 1
return rightmost - leftmost + 1
'''
left, right = 0,0
# left to right to find max
maxval = A[0]
# right to left to find min
minval = A[n-1]
for i in range(1,n):
if A[i] >= maxval:
maxval = A[i]
else:
right = i
for j in range(n-2,-1,-1):
if A[j] <= minval:
minval = A[j]
else:
left = j
if left == 0 and right == 0:
return 0
else:
return right - left + 1
A = [1,4,6,5,9,10]
# A = [1,2,3,3,8,9]
n = 6
print(Subsequence().shortestSubsequence(A,n))