-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_for_cifar10.py
140 lines (123 loc) · 6.61 KB
/
train_for_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import argparse
import torch
from torchvision import datasets, transforms
from parallel_nets.ResNet_for_cifar10 import *
from parallel_nets.VGGnet_for_cifar10 import VGG16
import torch.optim as optim
import os
import torch.nn.functional as F
import time
from tensorboardX import SummaryWriter
import numpy as np
def data_model_load(args, model, kwargs):
train_dataset = datasets.CIFAR10('./data', True, download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
]))
test_dataset = datasets.CIFAR10('./data', False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
]))
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.test_batch_size, shuffle=True, **kwargs)
if args.pretrained:
checkpoint = torch.load(args.checkpoint_path)
model.load_state_dict(checkpoint['model'])
start_epoch = checkpoint['epoch']
print('Pretrained model loaded.')
else:
start_epoch = 0
print('Model loaded.')
return train_loader, test_loader, start_epoch
def train(args, model, train_loader, optimizer, device, epoch, writer):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data_temp, target = data.to(device), target.to(device)
bs = data_temp.shape[0]
data = torch.zeros((TimeStep*bs,) + data_temp.shape[1:], device=data_temp.device)
for t in range(TimeStep):
data[t*bs:(t+1)*bs, ...] = data_temp
output = model(data)
loss = F.cross_entropy(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * args.batch_size, len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if args.tensorboard:
writer.add_scalar('Train Loss / batch_idx', loss.item(), batch_idx + len(train_loader) * epoch)
def test(args, model, test_loader, device, writer):
model.eval()
total_loss = 0.
correct = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(test_loader):
data_temp, target = data.to(device), target.to(device)
bs = data_temp.shape[0]
data = torch.zeros((TimeStep*bs,) + data_temp.shape[1:], device=data_temp.device)
for t in range(TimeStep):
data[t * bs:(t + 1) * bs, ...] = data_temp
output = model(data)
total_loss += F.cross_entropy(output, target, reduction='sum').item()
pre_result = output.argmax(dim=1, keepdim=True)
correct += pre_result.eq(target.view_as(pre_result)).sum().item()
total_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)'.format(
total_loss, correct, len(test_loader.dataset),
accuracy))
if args.tensorboard:
writer.add_scalar('Test Loss / epoch', total_loss, epoch)
writer.add_scalar('Test Accuracy / epoch', accuracy, epoch)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='trian')
parser.add_argument('--batch-size', type=int, default=64, help='input batch size for training')
parser.add_argument('--test-batch-size', type=int, default=64, help='input batch size for testing')
parser.add_argument('--total-epochs', type=int, default=110, help='number of epochs to train')
parser.add_argument('--lr', type=float, default=0.1, help='learning rate')
parser.add_argument('--use-cuda', action='store_true', default=True, help='use CUDA training')
parser.add_argument('--save', action='store_true', default=True, help='save model')
parser.add_argument('--tensorboard', action='store_true', default=True, help='write tensorboard')
parser.add_argument('--pretrained', action='store_true', default=False, help='use pre-trained model')
parser.add_argument('--log-interval', type=int, default=40,
help='how many batches to wait before logging training status')
parser.add_argument('--save-model-interval', type=int, default=10,
help='save model every save_model_interval')
parser.add_argument('--checkpoint-path', type=str, default='./checkpoint/cifar10/result_cifar10.pth',
help='use CUDA training')
args = parser.parse_args()
use_cuda = args.use_cuda and torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
torch.manual_seed(1)
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
writer = None
writer_path = './summaries/cifar10/result_cifar10' + '_' + str(len(os.listdir('./summaries/cifar10/')))
if args.tensorboard:
writer = SummaryWriter(writer_path)
# model = VGG16().to(device)
model = resnet20().to(device)
train_loader, test_loader, start_epoch = data_model_load(args, model, kwargs)
optimizer = optim.SGD(model.parameters(), args.lr, momentum=momentum_SGD, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 40, 0.1)
for _ in range(start_epoch):
scheduler.step()
for epoch in range(start_epoch + 1, args.total_epochs + 1):
start_time = time.time()
train(args, model, train_loader, optimizer, device, epoch, writer)
test(args, model, test_loader, device, writer)
waste_time = time.time() - start_time
print('One epoch wasting time:{:.0f}s, learning rate:{:.8f}\n'.format(
waste_time, optimizer.state_dict()['param_groups'][0]['lr']))
if epoch % args.save_model_interval == 0:
if args.save:
state = {'model': model.state_dict(), 'epoch': epoch}
torch.save(state, args.checkpoint_path)
scheduler.step()
if args.tensorboard:
writer.close()