-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_for_gesture.py
131 lines (115 loc) · 6.13 KB
/
train_for_gesture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import argparse
import torch
from parallel_nets.ResNet_for_Gesture import *
import torch.optim as optim
import os
import torch.nn.functional as F
from torchvision import transforms
import time
from tensorboardX import SummaryWriter
from DVS_dataload.DVS_Gesture_dataset import *
import copy
def data_model_load(args, model, kwargs):
path = os.path.join(os.path.join(os.getcwd(), 'data'), 'DVS_Gesture')
train_dataset = DVSGestureDataset(path, train=True, transform=Compose([Normalize_ToTensor()]))
test_dataset = DVSGestureDataset(path, train=False, transform=Compose([Normalize_ToTensor()]))
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.test_batch_size, shuffle=True, **kwargs)
if args.pretrained:
checkpoint = torch.load(args.checkpoint_path)
model.load_state_dict(checkpoint['model'])
start_epoch = checkpoint['epoch']
print('Pretrained model loaded.')
else:
start_epoch = 0
print('Model loaded.')
return train_loader, test_loader, start_epoch
def train(args, model, train_loader, optimizer, device, epoch, writer):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data_temp, target = data.to(device), target.to(device)
bs = data_temp.shape[0]
data = torch.zeros((TimeStep * bs,) + data_temp.shape[2:], device=data_temp.device)
for t in range(TimeStep):
data[t*bs:(t+1)*bs, ...] = data_temp[:, t, :, :, :]
output = model(data)
target = target.long().to(target.device)
loss = F.cross_entropy(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * args.batch_size, len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if args.tensorboard:
writer.add_scalar('Train Loss / batch_idx', loss.item(), batch_idx + len(train_loader) * epoch)
def test(args, model, test_loader, device, writer):
model.eval()
total_loss = 0.
correct = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(test_loader):
data_temp, target = data.to(device), target.to(device)
bs = data_temp.shape[0]
data = torch.zeros((TimeStep * bs,) + data_temp.shape[2:], device=data_temp.device)
for t in range(TimeStep):
data[t * bs:(t + 1) * bs, ...] = data_temp[:, t, :, :, :]
output = model(data)
target = target.long().to(target.device)
total_loss += F.cross_entropy(output, target, reduction='sum').item()
pre_result = output.argmax(dim=1, keepdim=True)
correct += pre_result.eq(target.view_as(pre_result)).sum().item()
total_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)'.format(
total_loss, correct, len(test_loader.dataset),
accuracy))
if args.tensorboard:
writer.add_scalar('Test Loss / epoch', total_loss, epoch)
writer.add_scalar('Test Accuracy / epoch', accuracy, epoch)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='trian')
parser.add_argument('--batch-size', type=int, default=28, help='input batch size for training')
parser.add_argument('--test-batch-size', type=int, default=28, help='input batch size for testing')
parser.add_argument('--total-epochs', type=int, default=120, help='number of epochs to train')
parser.add_argument('--lr', type=float, default=0.1, help='learning rate')
parser.add_argument('--use-cuda', action='store_true', default=True, help='use CUDA training')
parser.add_argument('--save', action='store_true', default=True, help='save model')
parser.add_argument('--tensorboard', action='store_true', default=True, help='write tensorboard')
parser.add_argument('--pretrained', action='store_true', default=False, help='use pre-trained model')
parser.add_argument('--log-interval', type=int, default=10,
help='how many batches to wait before logging training status')
parser.add_argument('--save-model-interval', type=int, default=5,
help='save model every save_model_interval')
parser.add_argument('--checkpoint-path', type=str, default='./checkpoint/dvs_gesture/result_gesture.pth',
help='use CUDA training')
args = parser.parse_args()
use_cuda = args.use_cuda and torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
torch.manual_seed(2)
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
writer = None
writer_path = './summaries/dvs_gesture/result_gesture' + '_' + str(len(os.listdir('./summaries/dvs_gesture')))
if args.tensorboard:
writer = SummaryWriter(writer_path)
model = resnet20().to(device)
train_loader, test_loader, start_epoch = data_model_load(args, model, kwargs)
optimizer = optim.SGD(model.parameters(), args.lr, momentum=momentum_SGD, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 40, 0.1)
for _ in range(start_epoch):
scheduler.step()
for epoch in range(start_epoch + 1, args.total_epochs + 1):
start_time = time.time()
train(args, model, train_loader, optimizer, device, epoch, writer)
test(args, model, test_loader, device, writer)
waste_time = time.time() - start_time
print('One epoch wasting time:{:.0f}s, learning rate:{:.8f}\n'.format(
waste_time, optimizer.state_dict()['param_groups'][0]['lr']))
if epoch % args.save_model_interval == 0:
if args.save:
state = {'model': model.state_dict(), 'epoch': epoch}
torch.save(state, args.checkpoint_path)
scheduler.step()
if args.tensorboard:
writer.close()