The following metrics are consistently used in our benchmark:
-
Mean Corruption Error (mCE):
- The Corruption Error (CE) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$ . - The average CE for model
$A$ on all$N$ corruption types, i.e., mCE, is calculated as:$\text{mCE} = \frac{1}{N}\sum\text{CE}_i$ .
- The Corruption Error (CE) for model
-
Mean Resilience Rate (mRR):
- The Resilience Rate (RR) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$ - The average RR for model
$A$ on all$N$ corruption types, i.e., mRR, is calculated as:$\text{mRR} = \frac{1}{N}\sum\text{RR}_i$ .
- The Resilience Rate (RR) for model
Corruption | Light | Moderate | Heavy | Average | ||
---|---|---|---|---|---|---|
Fog | 48.89 | 46.70 | 25.78 | 40.46 | 134.92 | 62.62 |
Wet Ground | 63.08 | 59.66 | 59.32 | 60.68 | 85.46 | 93.92 |
Snow | 47.99 | 48.69 | 48.91 | 48.53 | 110.17 | 75.11 |
Motion Blur | 61.49 | 58.14 | 53.79 | 57.80 | 62.91 | 89.46 |
Beam Missing | 63.02 | 59.55 | 53.76 | 58.78 | 94.37 | 90.98 |
Crosstalk | 32.53 | 28.08 | 24.77 | 28.46 | 171.72 | 44.05 |
Incomplete Echo | 59.71 | 56.69 | 51.12 | 55.84 | 96.91 | 86.43 |
Cross-Sensor | 60.28 | 54.74 | 35.00 | 50.01 | 92.66 | 77.40 |
-
Summary:
$\text{mIoU}_{\text{clean}} =$ 64.61%,$\text{mCE} =$ 106.14%,$\text{mRR} =$ 77.50%.
@inproceedings{yan2022dpass,
title = {2DPASS: 2D Priors Assisted Semantic Segmentation on LiDAR Point Clouds},
author = {Yan, Xu and Gao, Jiantao and Zheng, Chaoda and Zheng, Chao and Zhang, Ruimao and Cui, Shuguang and Li, Zhen},
booktitle = {European Conference on Computer Vision},
year = {2022},
}