Skip to content

Latest commit

 

History

History
48 lines (34 loc) · 2.11 KB

DPASS.md

File metadata and controls

48 lines (34 loc) · 2.11 KB

Robo3D Benchmark

The following metrics are consistently used in our benchmark:

  • Mean Corruption Error (mCE):

    • The Corruption Error (CE) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$.
    • The average CE for model $A$ on all $N$ corruption types, i.e., mCE, is calculated as: $\text{mCE} = \frac{1}{N}\sum\text{CE}_i$.
  • Mean Resilience Rate (mRR):

    • The Resilience Rate (RR) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$
    • The average RR for model $A$ on all $N$ corruption types, i.e., mRR, is calculated as: $\text{mRR} = \frac{1}{N}\sum\text{RR}_i$.

2DPASS

SemanticKITTI-C

Corruption Light Moderate Heavy Average $\text{CE}_i$ $\text{RR}_i$
Fog 48.89 46.70 25.78 40.46 134.92 62.62
Wet Ground 63.08 59.66 59.32 60.68 85.46 93.92
Snow 47.99 48.69 48.91 48.53 110.17 75.11
Motion Blur 61.49 58.14 53.79 57.80 62.91 89.46
Beam Missing 63.02 59.55 53.76 58.78 94.37 90.98
Crosstalk 32.53 28.08 24.77 28.46 171.72 44.05
Incomplete Echo 59.71 56.69 51.12 55.84 96.91 86.43
Cross-Sensor 60.28 54.74 35.00 50.01 92.66 77.40
  • Summary: $\text{mIoU}_{\text{clean}} =$ 64.61%, $\text{mCE} =$ 106.14%, $\text{mRR} =$ 77.50%.

nuScenes-C

References

@inproceedings{yan2022dpass,
  title = {2DPASS: 2D Priors Assisted Semantic Segmentation on LiDAR Point Clouds},
  author = {Yan, Xu and Gao, Jiantao and Zheng, Chaoda and Zheng, Chao and Zhang, Ruimao and Cui, Shuguang and Li, Zhen},
  booktitle = {European Conference on Computer Vision},
  year = {2022},
}