-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathSE.py
52 lines (50 loc) · 1.8 KB
/
SE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torch.nn as nn
#--------------SELayer define and test---------------
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid()
)
def forward(self, x):
x1, x2, _, __ = x.size()
y = self.avg_pool(x).view(x1, x2)
y = self.fc(y).view(x1, x2, 1, 1)
y_out = y.expand_as(x)#匹配x
return x * y_out
#测试
if __name__ == '__main__':
a=torch.randn(1,64,128,128)
selayer=SELayer(64)
print(selayer(a).shape)
#--------------tutorial---------------
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1,6,(5, 5))
self.conv2 = nn.Conv2d(6,16,(5, 5))
#conv2:input_channel-6,output_channel-16
#SELayer:input_channel-16,output_channel-16
#-----------SELayer_define-----------
self.SELayer=SELayer(16)
#-----------SELayer_define-----------
self.fc1 = nn.Linear(256, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)),(2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)),(2, 2))
#-----------SELayer_forward-----------
x = self.SELayer(x)
#-----------SELayer_forward-----------
x = x.view(x.size()[0], -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
return x
#--------------tutorial---------------