-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAgent.py
92 lines (78 loc) · 5.68 KB
/
Agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import AgentControl
import Config
import Memory
import numpy as np
import itertools
class Agent:
# Role of Agent class is to coordinate between AgentControll where we do all calculations
# and Memory where we store all of the data
def __init__(self, state_size, action_size, batch_size):
self.agent_control = AgentControl.AgentControl(state_size=state_size, action_size=action_size)
self.memory = Memory.Memory(state_size, action_size, batch_size)
self.policy_loss_m = []
self.critic_loss_m = []
self.policy_loss_mm = [0] * 100
self.critic_loss_mm = [0] * 100
self.max_reward = -300
self.ep_count = 0
def set_optimizer_lr_eps(self, n_step):
self.agent_control.set_optimizer_lr_eps(n_step)
def get_action(self, state):
actions, actions_logprob = self.agent_control.get_action(state)
return actions.cpu().detach().numpy(), actions_logprob
def add_to_memory(self, state, action, actions_logprob, new_state, reward, done, n_batch_step):
self.memory.add(state, action, actions_logprob, new_state, reward, done, n_batch_step)
def calculate_old_value_state(self):
# Get NN output from collected states and pass it to the memory
self.memory.set_old_value_state(self.agent_control.get_critic_value(self.memory.states).squeeze(-1).detach())
def calculate_advantage(self):
# For basic advantage function we have to calculate future rewards we got from each state, where reward from
# last state is estimation (since we only know rewards in steps we took, not after), discount them and
# subtract from baseline which in this case will be estimated value of each state.
# GAE advantage gives us to decide we want each state advantage to be calculated with
# reward + estimate(next state) - estimate(state) which has low variance but high bias or with
# reward + gamma*next_reward + ... + gamma^n * estimate(last next state) - estimate(state) which has high
# variance but low bias. We can decide to calculate advantage with somethig between those two and Config.LAMBDA
# will be hyperparameter for that
values = self.agent_control.get_critic_value(self.memory.states).squeeze(-1).detach()
if Config.GAE:
next_values = self.agent_control.get_critic_value(self.memory.new_states).squeeze(-1).detach()
self.memory.calculate_gae_advantage(values, next_values)
else:
next_value = self.agent_control.get_critic_value(self.memory.new_states[-1]).squeeze(-1).detach()
self.memory.calculate_advantage(next_value, values)
def update(self, indices):
# Main PPO point is updating policy NN. This is done by calculating derivative of loss function and doing
# gradient descent. First we have to calculate ratio. Second to find minimum between ratio*advantage and
# clipped_ratio*advantage. Third to find mean of Config.MINIBATCH_SIZE losses.
# To calculate ratio we need new and old action probability. We already have old when we fed states to
# policy NN when we wanted to get action from it. We can get new action probabilities if we give same states
# but also actions we got. With states NN can create Normal distribution and with action he will sample the same
# part of distribution, but now with different probability because Normal distribution is different.
new_action_logprob, entropy = self.agent_control.calculate_logprob(self.memory.states[indices], self.memory.actions[indices])
ratios = self.agent_control.calculate_ratio(new_action_logprob, self.memory.action_logprobs[indices])
policy_loss = self.agent_control.update_policy(self.memory.advantages[indices], ratios, entropy)
# Similar to ratio in policy loss, we also clipped values from critic. For that we need old_value_state which
# represent old estimate of states before updates.
critic_loss = self.agent_control.update_critic(self.memory.gt[indices], self.memory.states[indices], self.memory.old_value_state[indices])
# Calculating mean losses for statistics
self.policy_loss_m.append(policy_loss.detach().item())
self.critic_loss_m.append(critic_loss.detach().item())
def record_results(self, n_step, writer, env):
self.max_reward = np.maximum(self.max_reward, np.max(env.return_queue))
self.policy_loss_mm[n_step % 100] = np.mean(self.policy_loss_m)
self.critic_loss_mm[n_step % 100] = np.mean(self.critic_loss_m)
print("Step " + str(n_step) + "/" + str(Config.NUMBER_OF_STEPS) + " Mean 100 policy loss: " + str(
np.round(np.mean(self.policy_loss_mm[:min(n_step + 1, 100)]), 4)) + " Mean 100 critic loss: " + str(
np.round(np.mean(self.critic_loss_mm[:min(n_step + 1, 100)]), 4)) + " Max reward: " + str(
np.round(self.max_reward, 2)) + " Mean 100 reward: " + str(
np.round(np.mean(env.return_queue), 2)) + " Last rewards: " + str(
np.round(list(itertools.islice(env.return_queue, min(env.episode_count, 100)-(env.episode_count-self.ep_count), min(env.episode_count, 100))), 2)) + " Ep" + str(env.episode_count))
if Config.WRITER_FLAG:
writer.add_scalar('pg_loss', np.mean(self.policy_loss_m), n_step)
writer.add_scalar('vl_loss', np.mean(self.critic_loss_m), n_step)
writer.add_scalar('rew', env.return_queue[-1], n_step)
writer.add_scalar('100rew', np.mean(env.return_queue), n_step)
self.critic_loss_m = []
self.policy_loss_m = []
self.ep_count = env.episode_count