name: "Darkent2Caffe" input: "data" input_dim: 1 input_dim: 3 input_dim: 416 input_dim: 416 layer { bottom: "data" top: "layer1-conv" name: "layer1-conv" type: "Convolution" convolution_param { num_output: 16 kernel_size: 3 pad: 1 stride: 1 bias_term: false } } layer { bottom: "layer1-conv" top: "layer1-conv" name: "layer1-bn" type: "BatchNorm" batch_norm_param { use_global_stats: true } } layer { bottom: "layer1-conv" top: "layer1-conv" name: "layer1-scale" type: "Scale" scale_param { bias_term: true } } layer { bottom: "layer1-conv" top: "layer1-conv" name: "layer1-act" type: "ReLU" relu_param { negative_slope: 0.1 } } layer { bottom: "layer1-conv" top: "layer2-maxpool" name: "layer2-maxpool" type: "Pooling" pooling_param { kernel_size: 2 stride: 2 pool: MAX } } layer { bottom: "layer2-maxpool" top: "layer3-conv" name: "layer3-conv" type: "Convolution" convolution_param { num_output: 32 kernel_size: 3 pad: 1 stride: 1 bias_term: false } } layer { bottom: "layer3-conv" top: "layer3-conv" name: "layer3-bn" type: "BatchNorm" batch_norm_param { use_global_stats: true } } layer { bottom: "layer3-conv" top: "layer3-conv" name: "layer3-scale" type: "Scale" scale_param { bias_term: true } } layer { bottom: "layer3-conv" top: "layer3-conv" name: "layer3-act" type: "ReLU" relu_param { negative_slope: 0.1 } } layer { bottom: "layer3-conv" top: "layer4-maxpool" name: "layer4-maxpool" type: "Pooling" pooling_param { kernel_size: 2 stride: 2 pool: MAX } } layer { bottom: "layer4-maxpool" top: "layer5-conv" name: "layer5-conv" type: "Convolution" convolution_param { num_output: 64 kernel_size: 3 pad: 1 stride: 1 bias_term: false } } layer { bottom: "layer5-conv" top: "layer5-conv" name: "layer5-bn" type: "BatchNorm" batch_norm_param { use_global_stats: true } } layer { bottom: "layer5-conv" top: "layer5-conv" name: "layer5-scale" type: "Scale" scale_param { bias_term: true } } layer { bottom: "layer5-conv" top: "layer5-conv" name: "layer5-act" type: "ReLU" relu_param { negative_slope: 0.1 } } layer { bottom: "layer5-conv" top: "layer6-maxpool" name: "layer6-maxpool" type: "Pooling" pooling_param { kernel_size: 2 stride: 2 pool: MAX } } layer { bottom: "layer6-maxpool" top: "layer7-conv" name: "layer7-conv" type: "Convolution" convolution_param { num_output: 128 kernel_size: 3 pad: 1 stride: 1 bias_term: false } } layer { bottom: "layer7-conv" top: "layer7-conv" name: "layer7-bn" type: "BatchNorm" batch_norm_param { use_global_stats: true } } layer { bottom: "layer7-conv" top: "layer7-conv" name: "layer7-scale" type: "Scale" scale_param { bias_term: true } } layer { bottom: "layer7-conv" top: "layer7-conv" name: "layer7-act" type: "ReLU" relu_param { negative_slope: 0.1 } } layer { bottom: "layer7-conv" top: "layer8-maxpool" name: "layer8-maxpool" type: "Pooling" pooling_param { kernel_size: 2 stride: 2 pool: MAX } } layer { bottom: "layer8-maxpool" top: "layer9-conv" name: "layer9-conv" type: "Convolution" convolution_param { num_output: 256 kernel_size: 3 pad: 1 stride: 1 bias_term: false } } layer { bottom: "layer9-conv" top: "layer9-conv" name: "layer9-bn" type: "BatchNorm" batch_norm_param { use_global_stats: true } } layer { bottom: "layer9-conv" top: "layer9-conv" name: "layer9-scale" type: "Scale" scale_param { bias_term: true } } layer { bottom: "layer9-conv" top: "layer9-conv" name: "layer9-act" type: "ReLU" relu_param { negative_slope: 0.1 } } layer { bottom: "layer9-conv" top: "layer10-maxpool" name: "layer10-maxpool" type: "Pooling" pooling_param { kernel_size: 2 stride: 2 pool: MAX } } layer { bottom: "layer10-maxpool" top: "layer11-conv" name: "layer11-conv" type: "Convolution" convolution_param { num_output: 512 kernel_size: 3 pad: 1 stride: 1 bias_term: false } } layer { bottom: "layer11-conv" top: "layer11-conv" name: "layer11-bn" type: "BatchNorm" batch_norm_param { use_global_stats: true } } layer { bottom: "layer11-conv" top: "layer11-conv" name: "layer11-scale" type: "Scale" scale_param { bias_term: true } } layer { bottom: "layer11-conv" top: "layer11-conv" name: "layer11-act" type: "ReLU" relu_param { negative_slope: 0.1 } } layer { bottom: "layer11-conv" top: "layer12-maxpool" name: "layer12-maxpool" type: "Pooling" pooling_param { kernel_size: 1 stride: 1 pool: MAX } } layer { bottom: "layer12-maxpool" top: "layer13-conv" name: "layer13-conv" type: "Convolution" convolution_param { num_output: 1024 kernel_size: 3 pad: 1 stride: 1 bias_term: false } } layer { bottom: "layer13-conv" top: "layer13-conv" name: "layer13-bn" type: "BatchNorm" batch_norm_param { use_global_stats: true } } layer { bottom: "layer13-conv" top: "layer13-conv" name: "layer13-scale" type: "Scale" scale_param { bias_term: true } } layer { bottom: "layer13-conv" top: "layer13-conv" name: "layer13-act" type: "ReLU" relu_param { negative_slope: 0.1 } } layer { bottom: "layer13-conv" top: "layer14-conv" name: "layer14-conv" type: "Convolution" convolution_param { num_output: 256 kernel_size: 1 pad: 0 stride: 1 bias_term: false } } layer { bottom: "layer14-conv" top: "layer14-conv" name: "layer14-bn" type: "BatchNorm" batch_norm_param { use_global_stats: true } } layer { bottom: "layer14-conv" top: "layer14-conv" name: "layer14-scale" type: "Scale" scale_param { bias_term: true } } layer { bottom: "layer14-conv" top: "layer14-conv" name: "layer14-act" type: "ReLU" relu_param { negative_slope: 0.1 } } layer { bottom: "layer14-conv" top: "layer15-conv" name: "layer15-conv" type: "Convolution" convolution_param { num_output: 512 kernel_size: 3 pad: 1 stride: 1 bias_term: false } } layer { bottom: "layer15-conv" top: "layer15-conv" name: "layer15-bn" type: "BatchNorm" batch_norm_param { use_global_stats: true } } layer { bottom: "layer15-conv" top: "layer15-conv" name: "layer15-scale" type: "Scale" scale_param { bias_term: true } } layer { bottom: "layer15-conv" top: "layer15-conv" name: "layer15-act" type: "ReLU" relu_param { negative_slope: 0.1 } } layer { bottom: "layer15-conv" top: "layer16-conv" name: "layer16-conv" type: "Convolution" convolution_param { num_output: 33 kernel_size: 1 pad: 0 stride: 1 bias_term: true } } layer { bottom: "layer16-conv" type: "Concat" top: "layer17-yolo" name: "layer17-yolo" } layer { bottom: "layer14-conv" top: "layer18-route" name: "layer18-route" type: "Concat" } layer { bottom: "layer18-route" top: "layer19-conv" name: "layer19-conv" type: "Convolution" convolution_param { num_output: 128 kernel_size: 1 pad: 0 stride: 1 bias_term: false } } layer { bottom: "layer19-conv" top: "layer19-conv" name: "layer19-bn" type: "BatchNorm" batch_norm_param { use_global_stats: true } } layer { bottom: "layer19-conv" top: "layer19-conv" name: "layer19-scale" type: "Scale" scale_param { bias_term: true } } layer { bottom: "layer19-conv" top: "layer19-conv" name: "layer19-act" type: "ReLU" relu_param { negative_slope: 0.1 } } layer { bottom: "layer19-conv" top: "layer20-upsample" name: "layer20-upsample" type: "Upsample" #upsample_param { # scale: 2 #} } layer { bottom: "layer20-upsample" bottom: "layer9-conv" top: "layer21-route" name: "layer21-route" type: "Concat" } layer { bottom: "layer21-route" top: "layer22-conv" name: "layer22-conv" type: "Convolution" convolution_param { num_output: 256 kernel_size: 3 pad: 1 stride: 1 bias_term: false } } layer { bottom: "layer22-conv" top: "layer22-conv" name: "layer22-bn" type: "BatchNorm" batch_norm_param { use_global_stats: true } } layer { bottom: "layer22-conv" top: "layer22-conv" name: "layer22-scale" type: "Scale" scale_param { bias_term: true } } layer { bottom: "layer22-conv" top: "layer22-conv" name: "layer22-act" type: "ReLU" relu_param { negative_slope: 0.1 } } layer { bottom: "layer22-conv" top: "layer23-conv" name: "layer23-conv" type: "Convolution" convolution_param { num_output: 33 kernel_size: 1 pad: 0 stride: 1 bias_term: true } } layer { bottom: "layer16-conv" bottom: "layer23-conv" top: "yolo-det" name: "yolo-det" type: "Yolo" }