-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
185 lines (156 loc) · 6.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import shutil
import sys
import torch
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import os
import yaml
import time
# from tensorboard_logger import configure, log_value
from test_model import start_test, test
from train_config import parse_args
from function import data_config, optimizer_function, load_checkpoint, lr_scheduler, AverageMeter, save_checkpoint, \
gradual_warmup, fix_seed, Logger
from models.model import Network
from CMPM import Loss
import matplotlib.pyplot as plt
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
def train(epoch, train_loader, network, opitimizer, compute_loss, args, checkpoint_dir):
train_loss = AverageMeter()
# switch to train mode
network.train()
for step, (images, captions, labels, mask) in enumerate(train_loader):
images = images.to(device)
captions = captions.to(device)
labels = labels.to(device)
mask = mask.to(device)
opitimizer.zero_grad()
interval = images.shape[0]
# compute loss
img_f5, \
txt_f5= network(interval,images, captions, mask)
loss = compute_loss(img_f5, \
txt_f5, labels)
train_loss.update(loss, images.shape[0])
# graduate
loss.backward()
opitimizer.step()
if step % 10== 0:
print(
"Train Epoch:[{}/{}] iteration:[{}/{}] cmpm_loss:{:.4f}".format(epoch + 1, args.num_epoches, step,
len(train_loader), train_loss.avg,))
state = {"epoch": epoch + 1,
"state_dict": network.state_dict(),
"W": compute_loss.W
}
save_checkpoint(state, epoch+1, checkpoint_dir)
return train_loss.avg
def main(network, dataloader, compute_loss, optimizer, scheduler, start_epoch, args, checkpoint_dir):
ac_t2i_top1_best = 0.0
best_epoch = 0
start = time.time()
epochs = []
acc = []
loss = []
for epoch in range(start_epoch, args.num_epoches):
print("**********************************************************")
if epoch < args.warm_epoch:
print('learning rate warm_up')
if args.optimizer == 'sgd':
optimizer = gradual_warmup(epoch, args.sgd_lr, optimizer, epochs=args.warm_epoch)
else:
optimizer = gradual_warmup(epoch, args.adam_lr, optimizer, epochs=args.warm_epoch)
train_loss=train(epoch, dataloader['train'], network, optimizer, compute_loss, args, checkpoint_dir)
scheduler.step()
Epoch_time = time.time() - start
start = time.time()
print('Epoch_training complete in {:.0f}m {:.0f}s'.format(
Epoch_time // 60, Epoch_time % 60))
for param in optimizer.param_groups:
print('lr:{}'.format(param['lr']))
ac_top1_t2i, ac_top5_t2i, ac_top10_t2i, mAP = test(dataloader['val'], network, args)
print('train_loss:{}'.format(train_loss.cuda().data.cpu().numpy()))
print('Epoch:{}'.format(epoch+1))
print('t2i_top1: {:.2%}'.format(ac_top1_t2i))
print('t2i_top5: {:.2%}'.format(ac_top5_t2i))
print('t2i_top10: {:.2%}'.format(ac_top10_t2i))
print('mAP: {:.2%}'.format(mAP))
epochs.append(epoch)
ac_top1_t2i = ac_top1_t2i.cuda().data.cpu().numpy()
acc.append(ac_top1_t2i*100)
loss.append(train_loss.cuda().data.cpu().numpy())
plt.plot(epochs, acc, color='r', label='acc') # r表示红色
plt.plot(epochs, loss, color=(0, 0, 0), label='loss') # 也可以用RGB值表示颜色
plt.xlabel('epochs') # x轴表示
plt.ylabel('y label') # y轴表示
plt.title("chart") # 图标标题表示
plt.legend() # 每条折线的label显示
plt.show() # 显示图片
if __name__=='__main__':
args = parse_args()
# load GPU
str_ids = args.gpus.split(',')
gpu_ids = []
for str_id in str_ids:
gid = int(str_id)
if gid >= 0:
gpu_ids.append(gid)
# set gpu ids
if len(gpu_ids) > 0:
torch.cuda.set_device(gpu_ids[0])
cudnn.benchmark = True # make the training speed faster
fix_seed(args.seed)
name = args.name
# set some paths
checkpoint_dir = args.checkpoint_dir
checkpoint_dir = os.path.join(checkpoint_dir, name)
log_dir = args.log_dir
log_dir = os.path.join(log_dir, name)
sys.stdout = Logger(os.path.join(log_dir, "train_log.txt"))
opt_dir = os.path.join('log', name)
if not os.path.exists(opt_dir):
os.makedirs(opt_dir)
with open('%s/opts_train.yaml' % opt_dir, 'w') as fp:
yaml.dump(vars(args), fp, default_flow_style=False)
# pre-process the dataset
transform_train_list = [
transforms.Resize((args.height, args.width), interpolation=3),
transforms.Pad(10),
transforms.RandomCrop((args.height, args.width)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
transform_val_list = [
transforms.Resize((args.height, args.width), interpolation=3),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
# define dictionary: data_transforms
data_transforms = {
'train': transforms.Compose(transform_train_list),
'val': transforms.Compose(transform_val_list),
}
dataloaders = {x: data_config(args.dir, args.batch_size, x, args.max_length, args.embedding_type, transform=data_transforms[x])
for x in ['train', 'val']}
# loss function
if args.CMPM:
print("import CMPM")
if args.CMPC:
print("import CMPC")
compute_loss = Loss(args).to(device)
model = Network(args).to(device)
# compute the model size:
print('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
# load checkpoint:
if args.resume is not None:
start_epoch, model = load_checkpoint(model, args.resume)
else:
print("Do not load checkpoint,Epoch start from 0")
start_epoch = 0
# opitimizer:
opitimizer = optimizer_function(args, model)
exp_lr_scheduler = lr_scheduler(opitimizer, args)
main(model, dataloaders, compute_loss, opitimizer, exp_lr_scheduler, start_epoch, args, checkpoint_dir)
start_test()