-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathNadam.py
77 lines (62 loc) · 3.27 KB
/
Nadam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
from torch.optim import Optimizer
import math
class Nadam(Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
schedule_decay=0.004,amsgrad=False):
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps,
amsgrad=amsgrad,schedule_decay=schedule_decay)
super(Nadam, self).__init__(params, defaults)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Nadam does not support sparse gradients, please consider SparseAdam instead')
amsgrad = group['amsgrad']
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
state['m_schedule'] = 1
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
if amsgrad:
max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
momentum_cache_t = beta1 * (
1. - 0.5 * math.pow(0.96, state['step'] * group['schedule_decay'] ))
momentum_cache_t_1 = beta1 * (
1. - 0.5 * math.pow(0.96, (state['step']+1) * group['schedule_decay'] ))
state['m_schedule'] = state['m_schedule'] * momentum_cache_t
exp_avg.mul_(beta1).add_(1 - beta1, grad)
m_t_prime = exp_avg/(1 - state['m_schedule'] * momentum_cache_t_1)
g_prime = grad.div(1 - state['m_schedule'])
m_t_bar = (1. - momentum_cache_t) * g_prime + momentum_cache_t_1 * m_t_prime
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq , out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
v_t_prime = max_exp_avg_sq/(1 - beta2 ** state['step'])
else:
v_t_prime = exp_avg_sq / (1 - beta2 ** state['step'])
denom = v_t_prime.sqrt().add_(group['eps'])
p.data.addcdiv_(-group['lr'], m_t_bar , denom)
return loss