-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecode.py
225 lines (194 loc) · 9.15 KB
/
decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import sys
import math
import time
import random
import argparse
import subprocess
import tracemalloc
import fpzip
import torch
import numpy as np
from osgeo import gdal
import logger
from constants import *
from LBDRNmodel import LBDRNModel
from LBDRNdataset import merge_tiles, write_tiff_with_gdal
gdal.UseExceptions()
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def read_image_header(bitstream):
ptr = 0
n_bytes_header = int.from_bytes(bitstream[ptr: ptr + 1], byteorder='big', signed=False)
ptr += 1
split_ratio = int.from_bytes(bitstream[ptr: ptr + 1], byteorder='big', signed=False)
ptr += 1
width = int.from_bytes(bitstream[ptr: ptr + 2], byteorder='big', signed=False)
ptr += 2
height = int.from_bytes(bitstream[ptr: ptr + 2], byteorder='big', signed=False)
ptr += 2
KD = int.from_bytes(bitstream[ptr: ptr + 1], byteorder='big', signed=False)
ptr += 1
K = KD >> 4
D = KD & 0x0F
bcnl = int.from_bytes(bitstream[ptr: ptr + 1], byteorder='big', signed=False)
ptr += 1
bc = 2 ** (bcnl >> 4)
nl = bcnl & 0x0F
nn_bytes_list, base_bytes_list = [], []
for _ in range(split_ratio ** 2):
nn_bytes = int.from_bytes(bitstream[ptr: ptr + 3], byteorder='big', signed=False)
ptr += 3
nn_bytes_list.append(nn_bytes)
for _ in range(split_ratio ** 2):
base_bytes = int.from_bytes(bitstream[ptr: ptr + 4], byteorder='big', signed=False)
ptr += 4
base_bytes_list.append(base_bytes)
return n_bytes_header, split_ratio, width, height, K, bc, nl, D, nn_bytes_list, base_bytes_list
def test(bitstream, dirname, filename, nn_bytes, base_bytes):
sub_nn_bitstream = bitstream[:nn_bytes]
sub_nn_bitstream_path = f'{dirname}/{filename}_nn.bin'
with open(sub_nn_bitstream_path, 'wb') as f_out: f_out.write(sub_nn_bitstream)
bitstream = bitstream[nn_bytes:]
recon_path = f'{dirname}/{filename}_recon.tif'
jp2_path = f'{dirname}/{filename}_base.jp2'
sub_base_bitstream = bitstream[:base_bytes]
with open(jp2_path, 'wb') as f_out: f_out.write(sub_base_bitstream)
bitstream = bitstream[base_bytes:]
cmd_decode = f"gdal_translate -of GTiff {jp2_path} {recon_path}"
r = sh(cmd_decode)
logger.log.info(r)
dataset = gdal.Open(recon_path)
base = dataset.ReadAsArray().astype(np.uint16) # CHW or HW uint16!!!
base = base.reshape((-1, base.shape[-2], base.shape[-1])) # CHW
C, H, W = base.shape
num_colors = C * (2 * D + 1) ** 2 * USE_COLORS
num_coords = (2 * N_FREQ * EMBEDDING + 1) * 2 * USE_COORDINATES
feature_dim = num_coords + num_colors
features = np.zeros((H, W, feature_dim), dtype=np.float32) #
if USE_COORDINATES:
coords_h, coords_w = np.meshgrid(np.arange(H), np.arange(W), indexing='ij')
ph = 2 * coords_h / (H - 1) - 1
pw = 2 * coords_w / (W - 1) - 1
coords = np.stack([ph, pw], axis=-1).astype(np.float32)
if EMBEDDING:
sin_part = np.sin(SIGMA ** np.arange(N_FREQ) * np.pi * coords[..., np.newaxis])
cos_part = np.cos(SIGMA ** np.arange(N_FREQ) * np.pi * coords[..., np.newaxis])
coords = np.concatenate([coords[..., np.newaxis], sin_part, cos_part], axis=-1)
coords = coords.reshape((H, W, -1))
features[:, :, :num_coords] = coords.reshape(H, W, -1)
if USE_COLORS:
base_pad = np.pad(base.astype(np.float32) / base.max(),
((0, 0), (D, D), (D, D)),
mode='reflect'
).transpose(1, 2, 0) # (H+2D)(W+2D)C
colors = np.lib.stride_tricks.sliding_window_view(base_pad, (2 * D + 1, 2 * D + 1), axis=(0, 1))
if RELATIVE and D > 0:
centers = base_pad[D:H+D, D:W+D, :][:, :, :, np.newaxis, np.newaxis]
colors = colors - centers
features[:, :, num_coords:] = colors.reshape((H, W, -1))
features = features.reshape(H * W, feature_dim)
model = LBDRNModel(dim_in=features.shape[-1],
dim_hidden=bc,
dim_out=C,
num_layers=nl,
# activation=torch.nn.ReLU() # Default: Sine
)
model = model.to(DEVICE)
with open(sub_nn_bitstream_path,'rb') as f: compressed_bytes = f.read()
params = fpzip.decompress(compressed_bytes, order='C')[0][0][0]
k = 0
state_dict = {}
for param_tensor in model.state_dict():
values = params[k:k+model.state_dict()[param_tensor].numel()].reshape(model.state_dict()[param_tensor].size())
state_dict[param_tensor] = torch.from_numpy(values)
k = k + model.state_dict()[param_tensor].numel()
model.load_state_dict(state_dict)
model.eval()
with torch.no_grad():
x = torch.from_numpy(features).to(torch.float32)
y_pred = torch.zeros(x.shape[0], C).to(DEVICE) # Save CUDA Memory? to('cpu')
# y_pred = model(x.to(DEVICE))
bs = 2 ** 22 # Avoid CUDA Out of Memory
for b in range(math.ceil(x.shape[0] / bs)):
xb = x[bs*b:bs*(b+1)].to(DEVICE)
y_pred[bs*b:bs*(b+1)] = model(xb) # Save CUDA Memory? to('cpu')
residual = torch.round(y_pred * (2 ** K -1 )).to('cpu').numpy() #
residual = residual.reshape(H, W, C)
residual = np.transpose(residual, axes=(2, 0, 1))
image = np.round((base << K).astype(np.float32) + residual).astype(np.uint16)
write_tiff_with_gdal(recon_path, image)
logger.log.info(f'Recon: {recon_path}')
subprocess.call(f'rm -f {jp2_path}', shell=True)
subprocess.call(f'rm -f {jp2_path}.aux.xml', shell=True)
subprocess.call(f'rm -f {sub_nn_bitstream_path}', shell=True)
return bitstream
def sh(cmd, input=''):
rst = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, input=input.encode('utf-8'))
assert rst.returncode == 0, rst.stderr.decode('utf-8')
return rst.stdout.decode('utf-8')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='LBDRN-RSIC')
parser.add_argument('--seed', type=int, default=19920517)
parser.add_argument('-i', '--bin_path', type=str, help='binstream path')
parser.add_argument('-org', '--org_path', type=str, default=None, help='org path')
args = parser.parse_args()
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(args.seed)
random.seed(args.seed)
torch.utils.backcompat.broadcast_warning.enabled = True
# tracemalloc.start()
dirname, basename = os.path.split(args.bin_path)
filename = os.path.splitext(basename)[0]
if os.path.exists(f'{dirname}/decode.txt'):
decoded = False
with open(f'{dirname}/decode.txt', 'r') as file:
content = file.read()
if "bpsp" in content:
decoded = True
print('Bitstream already decoded!')
if decoded:
sys.exit()
logger.create_logger(dirname, 'decode.txt')
logger.log.info(f'Binstream: {args.bin_path}')
start_time = time.time()
with open(args.bin_path, 'rb') as fin: bitstream = fin.read()
n_bytes_header, split_ratio, width, height, K, bc, nl, D, nn_bytes_list, base_bytes_list = read_image_header(bitstream)
bitstream = bitstream[n_bytes_header:]
bin_path = args.bin_path
recon_path = f'{dirname}/{basename[:-4]}_recon.tif'
if split_ratio > 1:
for i in range(split_ratio):
for j in range(split_ratio):
bitstream = test(bitstream, dirname, filename=f'tile_{i}_{j}',
nn_bytes=nn_bytes_list[i*split_ratio+j],
base_bytes=base_bytes_list[i*split_ratio+j])
merge_tiles(dirname, recon_path, split_ratio, width, height)
for i in range(split_ratio):
for j in range(split_ratio):
subprocess.call(f'rm -f {dirname}/tile_{i}_{j}_recon.tif', shell=True)
else:
bitstream = test(bitstream,dirname, filename, nn_bytes_list[0], base_bytes_list[0])
end_time = time.time()
logger.log.info(f'Time elapsed: {end_time - start_time}')
# current, peak = tracemalloc.get_traced_memory()
# tracemalloc.stop()
# logger.log.info(f"Current memory usage: {current / 10**6:.2f} MB")
# logger.log.info(f"Peak memory usage: {peak / 10**6:.2f} MB")
if args.org_path is not None:
dataset = gdal.Open(args.org_path)
org_img = dataset.ReadAsArray() # CHW
dataset = gdal.Open(recon_path)
rec_img = dataset.ReadAsArray() # CHW
bytes = os.path.getsize(bin_path)
mse_value = np.mean((org_img.astype(np.float32) - rec_img.astype(np.float32)) ** 2) #
logger.log.info(f"MSE: {mse_value}")
peak = 10000 # np.max(org_img) #
psnr = 10 * np.log10(peak ** 2 / mse_value)
logger.log.info(f"PSNR: {psnr}")
n_subpixels = np.prod(org_img.shape)
logger.log.info(f"Total size: {bytes} bytes, bpsp={bytes * 8 / n_subpixels}")
if True: # False: # Delete the reconstructed image?
subprocess.call(f'rm -f {recon_path}', shell=True)