-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathIQAdataset.py
107 lines (92 loc) · 4.26 KB
/
IQAdataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from torch.utils.data import Dataset, DataLoader, Subset
from torchvision.transforms.functional import resize, rotate, crop, hflip, to_tensor, normalize
from PIL import Image
import h5py
import os
import numpy as np
import random
def default_loader(path):
return Image.open(path).convert('RGB') #
class IQADataset(Dataset):
def __init__(self, args, status='train', loader=default_loader):
self.status = status
self.augment = args.augmentation
self.angle = args.angle
self.crop_size_h = args.crop_size_h
self.crop_size_w = args.crop_size_w
self.hflip_p = args.hflip_p
Info = h5py.File(args.data_info[args.dataset], 'r')
index = Info['index']
index = index[:, args.exp_id % index.shape[1]]
ref_ids = Info['ref_ids'][0, :]
if status == 'train':
index = index[0:int(args.train_ratio * len(index))]
elif status == 'val':
index = index[int(args.train_ratio * len(index)):int(args.train_and_val_ratio * len(index))]
elif status == 'test':
index = index[int(args.train_and_val_ratio * len(index)):len(index)]
self.index = []
for i in range(len(ref_ids)):
if ref_ids[i] in index:
self.index.append(i)
print("# {} images: {}".format(status, len(self.index)))
self.label = Info['subjective_scores'][0, self.index].astype(np.float32)
self.label_std = Info['subjective_scoresSTD'][0, self.index].astype(np.float32)
self.im_names = [Info[Info['im_names'][0, :][i]][()].tobytes()[::2].decode() for i in self.index]
self.ims = []
for im_name in self.im_names:
im = loader(os.path.join(args.im_dirs[args.dataset], im_name))
if args.dataset == 'CLIVE': #
w, h = im.size
if w != 500 or h != 500:
im = resize(im, (500, 500)) #
if args.resize: # resize or not?
im = resize(im, (args.resize_size_h, args.resize_size_w)) # h, w
self.ims.append(im)
def __len__(self):
return len(self.index)
def __getitem__(self, idx):
im = self.transform(self.ims[idx], self.status, self.angle, self.crop_size_h, self.crop_size_w, self.hflip_p)
label = self.label[idx]
label_std = self.label_std[idx]
return im, (label, label_std)
def transform(self, im, status, angle=2, crop_size_h=498, crop_size_w=498, hflip_p=0.5):
if status == 'train' and self.augment: # data augmentation
angle = random.uniform(-angle, angle)
p = random.random()
w, h = im.size
i = random.randint(0, h - crop_size_h)
j = random.randint(0, w - crop_size_w)
im = rotate(im, angle)
if p < hflip_p:
im = hflip(im)
im = crop(im, i, j, self.crop_size_h, self.crop_size_w)
im = to_tensor(im)
im = normalize(im, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
return im
def get_data_loaders(args):
""" Prepare the train-val-test data
:param args: related arguments
:return: train_loader, val_loader, test_loader
"""
train_dataset = IQADataset(args, 'train')
batch_size = args.batch_size
if args.debug:
num_samples = 5 * batch_size
print("Debug mode: reduced training dataset to the first {} samples".format(num_samples))
train_dataset = Subset(train_dataset, list(range(num_samples)))
train_loader = DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=4,
pin_memory=True) # If the last batch only contains 1 sample, you need drop_last=True.
val_dataset = IQADataset(args, 'val')
test_dataset = IQADataset(args, 'test')
if args.debug:
num_samples = 5
print("Debug mode: reduced validation/test datasets to the first {} samples".format(num_samples))
val_dataset = Subset(val_dataset, list(range(num_samples)))
test_dataset = Subset(test_dataset, list(range(num_samples)))
val_loader = DataLoader(val_dataset)
test_loader = DataLoader(test_dataset)
return train_loader, val_loader, test_loader