-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathIQAperformance.py
101 lines (88 loc) · 3.71 KB
/
IQAperformance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from ignite.metrics.metric import Metric
import numpy as np
from scipy import stats
class IQAPerformance(Metric):
"""
Evaluation of VQA methods using SROCC, PLCC, RMSE.
`update` must receive output of the form (y_pred, y).
"""
def __init__(self, status='train', k=[1,1,1], b=[0,0,0], mapping=True):
super(IQAPerformance, self).__init__()
self.k = k
self.b = b
self.status = status
self.mapping = mapping
def reset(self):
self._y_pred = []
self._y_pred1 = []
self._y_pred2 = []
self._y = []
self._y_std = []
def update(self, output):
y_pred, y = output
self._y.extend([t.item() for t in y[0]])
self._y_std.extend([t.item() for t in y[1]])
self._y_pred.extend([t.item() for t in y_pred[-1]])
self._y_pred1.extend([t.item() for t in y_pred[0]])
self._y_pred2.extend([t.item() for t in y_pred[1]])
def compute(self):
sq = np.reshape(np.asarray(self._y), (-1,))
sq_std = np.reshape(np.asarray(self._y_std), (-1,))
pq_before = np.reshape(np.asarray(self._y_pred), (-1, 1))
pq = self.linear_mapping(pq_before, sq, i=0)
SROCC = stats.spearmanr(sq, pq)[0]
PLCC = stats.pearsonr(sq, pq)[0]
RMSE = np.sqrt(((sq - pq) ** 2).mean())
# KROCC = stats.stats.kendalltau(sq, pq)[0]
# outlier_ratio = (np.abs(sq - pq) > 2 * sq_std).mean()
pq1_before = np.reshape(np.asarray(self._y_pred1), (-1, 1))
pq2_before = np.reshape(np.asarray(self._y_pred2), (-1, 1))
pq1 = self.linear_mapping(pq1_before, sq, i=1)
pq2 = self.linear_mapping(pq2_before, sq, i=2)
SROCC1 = stats.spearmanr(sq, pq1)[0]
PLCC1 = stats.pearsonr(sq, pq1)[0]
RMSE1 = np.sqrt(((sq - pq1) ** 2).mean())
# KROCC1 = stats.stats.kendalltau(sq, pq1)[0]
# outlier_ratio1 = (np.abs(sq - pq1) > 2 * sq_std).mean()
SROCC2 = stats.spearmanr(sq, pq2)[0]
PLCC2 = stats.pearsonr(sq, pq2)[0]
RMSE2 = np.sqrt(((sq - pq2) ** 2).mean())
# KROCC2 = stats.stats.kendalltau(sq, pq2)[0]
# outlier_ratio2 = (np.abs(sq - pq2) > 2 * sq_std).mean()
return {'SROCC': SROCC,
'SROCC1': SROCC1,
'SROCC2': SROCC2,
'PLCC': PLCC,
'PLCC1': PLCC1,
'PLCC2': PLCC2,
'RMSE': RMSE,
'RMSE1': RMSE1,
'RMSE2': RMSE2,
'sq': sq,
'sq_std': sq_std,
'pq': pq,
'pq1': pq1,
'pq2': pq2,
'pq_before': pq_before,
'pq1_before': pq1_before,
'pq2_before': pq2_before,
'k': self.k,
'b': self.b
}
def linear_mapping(self, pq, sq, i=0):
if not self.mapping:
return np.reshape(pq, (-1,))
ones = np.ones_like(pq)
yp1 = np.concatenate((pq, ones), axis=1)
if self.status == 'train':
# LSR solution of Q_i = k_1\hat{Q_i}+k_2. One can use the form of Eqn. (17) in the paper.
# However, for an efficient implementation, we use the matrix form of the solution here.
# That is, h = (X^TX)^{-1}X^TY is the LSR solution of Y = Xh,
# where X = [\hat{\mathbf{Q}}, \mathbf{1}], h = [k_1,k_2]^T, and Y=\mathbf{Q}.
h = np.matmul(np.linalg.inv(np.matmul(yp1.transpose(), yp1)), np.matmul(yp1.transpose(), sq))
self.k[i] = h[0].item()
self.b[i] = h[1].item()
else:
h = np.reshape(np.asarray([self.k[i], self.b[i]]), (-1, 1))
pq = np.matmul(yp1, h)
return np.reshape(pq, (-1,))