-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain.py
305 lines (265 loc) · 15.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Author: Dingquan Li
# Email: dingquanli AT pku DOT edu DOT cn
# Date: 2020/1/14
import torch
from torch.optim import Adam, SGD, Adadelta, lr_scheduler
from apex import amp
from ignite.engine import create_supervised_evaluator, Events
from modified_ignite_engine import create_supervised_trainer
from IQAdataset import get_data_loaders
from IQAmodel import IQAModel
from IQAloss import IQALoss
from IQAperformance import IQAPerformance
from tensorboardX import SummaryWriter
import datetime
import os
import numpy as np
import random
from argparse import ArgumentParser
metrics_printed = ['SROCC', 'PLCC', 'RMSE', 'SROCC1', 'PLCC1', 'RMSE1', 'SROCC2', 'PLCC2', 'RMSE2']
def writer_add_scalar(writer, status, dataset, scalars, iter):
for metric_print in metrics_printed:
writer.add_scalar('{}/{}/{}'.format(status, dataset, metric_print), scalars[metric_print], iter)
def run(args):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = IQAModel(arch=args.architecture, pool=args.pool, use_bn_end=args.use_bn_end, P6=args.P6, P7=args.P7).to(device) #
print(model)
if args.ft_lr_ratio == .0:
for param in model.features.parameters():
param.requires_grad = False
train_loader, val_loader, test_loader = get_data_loaders(args)
optimizer = Adam([{'params': model.regression.parameters()}, # The most important parameters. Maybe we need three levels of lrs
{'params': model.dr6.parameters()},
{'params': model.dr7.parameters()},
{'params': model.regr6.parameters()},
{'params': model.regr7.parameters()},
{'params': model.features.parameters(), 'lr': args.learning_rate * args.ft_lr_ratio}],
lr=args.learning_rate, weight_decay=args.weight_decay) # Adam can be changed to other optimizers, such as SGD, Adadelta.
# Initialization
model, optimizer = amp.initialize(model, optimizer, opt_level=args.opt_level)
mapping = True # args.loss_type != 'mae' and args.loss_type != 'mse'
if args.evaluate:
checkpoint = torch.load(args.trained_model_file)
model.load_state_dict(checkpoint['model'])
k = checkpoint['k']
b = checkpoint['b']
evaluator = create_supervised_evaluator(model, metrics={'IQA_performance':
IQAPerformance(status='test', k=k, b=b, mapping=mapping)}, device=device)
evaluator.run(test_loader)
performance = evaluator.state.metrics
for metric_print in metrics_printed:
print('{}, {}: {:.3f}'.format(args.dataset, metric_print, performance[metric_print].item()))
for metric_print in metrics_printed:
print('{:.3f}'.format(performance[metric_print].item()))
np.save(args.save_result_file, performance)
return
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.lr_decay_step, gamma=args.lr_decay)
loss_func = IQALoss(loss_type=args.loss_type, alpha=args.alpha, beta=args.beta, p=args.p, q=args.q,
monotonicity_regularization=args.monotonicity_regularization, gamma=args.gamma, detach=args.detach)
trainer = create_supervised_trainer(model, optimizer, loss_func, device=device, accumulation_steps=args.accumulation_steps)
if args.pbar:
from ignite.contrib.handlers import ProgressBar
ProgressBar().attach(trainer)
evaluator_for_train = create_supervised_evaluator(model, metrics={'IQA_performance':
IQAPerformance(status='train', mapping=mapping)}, device=device)
current_time = datetime.datetime.now().strftime("%I:%M%p on %B %d, %Y")
writer = SummaryWriter(log_dir='{}/{}-{}'.format(args.log_dir, args.format_str, current_time))
global best_val_criterion, best_epoch
best_val_criterion, best_epoch = -100, -1 # larger, better, e.g., SROCC or PLCC. If RMSE is used, best_val_criterion <- 10000
@trainer.on(Events.ITERATION_COMPLETED)
def iter_event_function(engine):
writer.add_scalar("train/loss", engine.state.output, engine.state.iteration)
@trainer.on(Events.EPOCH_COMPLETED)
def epoch_event_function(engine):
if args.test_during_training:
evaluator_for_train.run(train_loader) # It is better to re-make a train_loader_for_evaluation so as not to disturb the random number generator.
performance = evaluator_for_train.state.metrics
writer_add_scalar(writer, 'train', args.dataset, performance, engine.state.epoch)
k = performance['k']
b = performance['b']
else:
k = [1, 1, 1]
b = [0, 0, 0]
evaluator = create_supervised_evaluator(model, metrics={'IQA_performance':
IQAPerformance(status='test', k=k, b=b, mapping=mapping)}, device=device)
evaluator.run(val_loader)
performance = evaluator.state.metrics
writer_add_scalar(writer, 'val', args.dataset, performance, engine.state.epoch)
val_criterion = abs(performance[args.val_criterion]) # when alpha=[0,1],loss_type='linearity', test_during_training=False, SROCC/PLCC can be negative during training.
if args.test_during_training:
evaluator.run(test_loader)
performance = evaluator.state.metrics
writer_add_scalar(writer, 'test', args.dataset, performance, engine.state.epoch)
global best_val_criterion, best_epoch
if val_criterion > best_val_criterion: # If RMSE is used, then change ">" to "<".
checkpoint = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'amp': amp.state_dict(),
'k': k,
'b': b
}
torch.save(checkpoint, args.trained_model_file)
best_val_criterion = val_criterion
best_epoch = engine.state.epoch
print('Save current best model @best_val_criterion ({}): {:.3f} @epoch: {}'.format(args.val_criterion, best_val_criterion, best_epoch))
else:
print('Model is not updated @val_criterion ({}): {:.3f} @epoch: {}'.format(args.val_criterion, val_criterion, engine.state.epoch))
scheduler.step(engine.state.epoch)
@trainer.on(Events.COMPLETED)
def final_testing_results(engine):
writer.close () # close the Tensorboard writer
print('best epoch: {}'.format(best_epoch))
checkpoint = torch.load(args.trained_model_file)
model.load_state_dict(checkpoint['model'])
if args.test_during_training:
k = checkpoint['k']
b = checkpoint['b']
else:
evaluator_for_train.run(train_loader)
performance = evaluator_for_train.state.metrics
k = performance['k']
b = performance['b']
checkpoint = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'amp': amp.state_dict(),
'k': k,
'b': b
}
torch.save(checkpoint, args.trained_model_file)
evaluator = create_supervised_evaluator(model, metrics={'IQA_performance':
IQAPerformance(status='test', k=k, b=b, mapping=mapping)}, device=device)
evaluator.run(test_loader)
performance = evaluator.state.metrics
for metric_print in metrics_printed:
print('{}, {}: {:.3f}'.format(args.dataset, metric_print, performance[metric_print].item()))
for metric_print in metrics_printed:
print('{:.3f}'.format(performance[metric_print].item()))
np.save(args.save_result_file, performance)
trainer.run(train_loader, max_epochs=args.epochs)
if __name__ == "__main__":
parser = ArgumentParser(description='Norm-in-Norm Loss with Faster Convergence and Better Performance for Image Quality Assessment')
parser.add_argument("--seed", type=int, default=19920517)
parser.add_argument('-lr', '--learning_rate', type=float, default=1e-4,
help='learning rate (default: 1e-4)')
parser.add_argument('-bs', '--batch_size', type=int, default=8,
help='batch size for training (default: 8)')
parser.add_argument('-flr', '--ft_lr_ratio', type=float, default=0.1,
help='ft_lr_ratio (default: 0.1)')
parser.add_argument('-accum', '--accumulation_steps', type=int, default=1,
help='accumulation_steps for training (default: 1)')
parser.add_argument('-e', '--epochs', type=int, default=30,
help='number of epochs to train (default: 30)')
parser.add_argument('-wd', '--weight_decay', type=float, default=0.0,
help='weight decay (default: 0.0)')
parser.add_argument('-lrd', '--lr_decay', type=float, default=0.1,
help='lr decay (default: 0.1)')
parser.add_argument('-olrd', '--overall_lr_decay', type=float, default=0.01,
help='overall lr decay (default: 0.01)')
parser.add_argument('-optl', '--opt_level', default='O1', type=str,
help='opt_level for amp (default: O1)')
parser.add_argument('-rn', '--randomness', action='store_true',
help='Allow randomness during training?')
parser.add_argument('-valc', '--val_criterion', default='SROCC', type=str,
help='val_criterion: SROCC or PLCC (default: SROCC)') # If using RMSE, minor modification should be made, i.e.,
parser.add_argument('-a', '--alpha', nargs=2, type=float, default=[1, 0],
help='loss coefficient alpha in total loss (default: [1, 0])')
parser.add_argument('-b', '--beta', nargs=3, type=float, default=[.1, .1, 1],
help='loss coefficients for level 6, 7, and 6+7 (default: [.1, .1, 1])')
parser.add_argument('-arch', '--architecture', default='resnext101_32x8d', type=str,
help='arch name (default: resnext101_32x8d)')
parser.add_argument('-pl', '--pool', default='avg', type=str,
help='pool method (default: avg)')
parser.add_argument('-ubne', '--use_bn_end', action='store_true',
help='Use bn at the end of the output?')
parser.add_argument('-P6', '--P6', type=int, default=1,
help='P6 (default: 1)')
parser.add_argument('-P7', '--P7', type=int, default=1,
help='P7 (default: 1)')
parser.add_argument('-lt', '--loss_type', default='norm-in-norm', type=str,
help='loss type (default: norm-in-norm)')
parser.add_argument('-p', '--p', type=float, default=1,
help='p (default: 1)')
parser.add_argument('-q', '--q', type=float, default=2,
help='q (default: 2)')
parser.add_argument('-detach', '--detach', action='store_true',
help='Detach in loss?')
parser.add_argument('-monoreg', '--monotonicity_regularization', action='store_true',
help='use monotonicity_regularization?')
parser.add_argument('-g', '--gamma', type=float, default=0.1,
help='coefficient of monotonicity regularization (default: 0.1)')
parser.add_argument('-ds', '--dataset', default='KonIQ-10k', type=str,
help='dataset name (default: KonIQ-10k)')
parser.add_argument('-eid', '--exp_id', default=0, type=int,
help='exp id for train-val-test splits (default: 0)')
parser.add_argument('-tr', '--train_ratio', type=float, default=0.6,
help='train ratio (default: 0.6)')
parser.add_argument('-tvr', '--train_and_val_ratio', type=float, default=0.8,
help='train_and_val_ratio (default: 0.8)')
parser.add_argument('-rs', '--resize', action='store_true',
help='Resize?')
parser.add_argument('-rs_h', '--resize_size_h', default=498, type=int,
help='resize_size_h (default: 498)')
parser.add_argument('-rs_w', '--resize_size_w', default=664, type=int,
help='resize_size_w (default: 664)')
parser.add_argument('-augment', '--augmentation', action='store_true',
help='Data augmentation?')
parser.add_argument('-ag', '--angle', default=2, type=float,
help='angle (default: 2)')
parser.add_argument('-cs_h', '--crop_size_h', default=498, type=int,
help='crop_size_h (default: 498)')
parser.add_argument('-cs_w', '--crop_size_w', default=498, type=int,
help='crop_size_w (default: 498)')
parser.add_argument('-hp', '--hflip_p', default=0.5, type=float,
help='hfilp_p (default: 0.5)')
parser.add_argument('-logd', "--log_dir", type=str, default="runs",
help="log directory for Tensorboard log output")
parser.add_argument('-tdt', '--test_during_training', action='store_true',
help='test_during_training?') # It is better to re-make a train_loader_for_evaluation so as not to disturb the random number generator.
parser.add_argument('-eval', '--evaluate', action='store_true',
help='Evaluate only?')
parser.add_argument('-debug', '--debug', action='store_true',
help='Debug the training by reducing dataflow to 5 batches')
parser.add_argument('-pbar', '--pbar', action='store_true',
help='Use progressbar for the training')
args = parser.parse_args()
if args.lr_decay == 1 or args.epochs < 3: # no lr decay
args.lr_decay_step = args.epochs
else: #
args.lr_decay_step = int(args.epochs/(1+np.log(args.overall_lr_decay)/np.log(args.lr_decay)))
# KonIQ-10k that train-val-test split provided by the owner
if args.dataset == 'KonIQ-10k':
args.train_ratio = 7058/10073
args.train_and_val_ratio = 8058/10073
if not args.resize:
args.resize_size_h = 768
args.resize_size_w = 1024
if args.beta[1] + args.beta[-1] == .0:
args.val_criterion = 'SROCC1'
if args.beta[0] + args.beta[-1] == .0:
args.val_criterion = 'SROCC2'
args.im_dirs = {'KonIQ-10k': 'KonIQ-10k',
'CLIVE': 'CLIVE'
} # ln -s database_path xxx
args.data_info = {'KonIQ-10k': './data/KonIQ-10kinfo.mat',
'CLIVE': './data/CLIVEinfo.mat'}
if not args.randomness:
torch.manual_seed(args.seed) #
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(args.seed)
random.seed(args.seed)
torch.utils.backcompat.broadcast_warning.enabled = True
args.format_str = '{}-{}-bn_end={}-loss={}-p={}-q={}-detach-{}-ft_lr_ratio={}-alpha={}-beta={}-{}-res={}-{}x{}-aug={}-monotonicity={}-lr={}-bs={}-e={}-opt_level={}-EXP{}'\
.format(args.architecture, args.pool, args.use_bn_end, args.loss_type, args.p, args.q, args.detach, args.ft_lr_ratio, args.alpha, args.beta,
args.dataset, args.resize, args.resize_size_h, args.resize_size_w, args.augmentation,
args.monotonicity_regularization, args.learning_rate, args.batch_size, args.epochs, args.opt_level, args.exp_id)
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
args.trained_model_file = 'checkpoints/' + args.format_str
if not os.path.exists('results'):
os.makedirs('results')
args.save_result_file = 'results/' + args.format_str
print(args)
run(args)