-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrenderSkyShadowMap.frag
211 lines (182 loc) · 6.66 KB
/
renderSkyShadowMap.frag
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#version 300 es
precision highp float;
precision highp int;
precision highp sampler3D;
uniform vec2 uWindowSize;
uniform bool uSampleCloudNoise;
uniform float uT;
uniform float uTModded;
uniform float uRCloud0;
uniform float uRCloud1;
uniform float uR1;
uniform float uRSun;
uniform float uRPlanet;
uniform vec3 uLightPos;
uniform float uMarchSamples;
uniform float uSkyRayleighScatteringMul;
uniform float uRayleighScaleDiv;
uniform float uMieScaleDiv;
uniform float uSkyAbsorptionMul;
uniform vec3 uSkyRayleighScattering;
uniform vec3 uMieScattering;
uniform vec3 uMieAbsorbtion;
uniform vec3 uCloudScattering;
uniform float uCloudTexScale;
uniform float uErosionTexScale;
uniform float uErosionThreshold;
uniform float uCloudDensityMul;
uniform sampler3D uCloudTex;
uniform sampler3D uErosionTex;
in vec2 vTexCoord;
layout (location=0) out vec4 color;
const float PI = 3.14159265359;
const float PI2 = PI * 2.;
const float inv4PI = 1. / (4. * PI);
const float PI_OVER_180 = PI / 180.0;
const float COT_HALF_FOV = 1. / (tan((30.) * PI_OVER_180));
const vec3 PLANET_ORIGIN = vec3(0.);
const float RAYLEIGH_SCATTERING_MULTIPLIER = .03624;
const float MIE_SCATTERING_MULTIPLIER = .00692;
const float MIE_ABSORBTION_MULTIPLIER = .00077;
const float OZONE_ABSORBTION_LAYER_WIDTH = 25.;
const float OZONE_LINEAR_TERM0 = 1. / 15.;
const float OZONE_CONSTANT_TERM0 = -2. / 3.;
const float OZONE_LINEAR_TERM1 = -1. / 15.;
const float OZONE_CONSTANT_TERM1 = 8. / 3.;
const vec3 OZONE_ABSORBTION = vec3(.000650, .001881, .000085);
struct ShadowMarchData {
vec3 opticalDepth;
vec3 nearSample;
vec3 farSample;
};
struct ParticipatingMedia {
vec3 rayleighScattering;
vec3 mieScattering;
vec3 scattering;
vec3 extinction;
};
//note: uniformly distributed, normalized rand, [0;1[
float nrand(vec2 n) {
return fract(sin(dot(n.xy, vec2(12.9898, 78.233)))* 43758.5453);
}
float n1rand(vec2 n) {
float t = fract(uTModded);
float nrnd0 = nrand(n + 0.07 * t);
return nrnd0;
}
// - r0: ray origin
// - rd: normalized ray direction
// - s0: sphere center
// - sR: sphere radius
// - Returns distance from r0 to first intersecion with sphere,
// or -1.0 if no intersection.
float raySphereIntersect(vec3 r0, vec3 rd, vec3 s0, float sR, bool farthest) {
float a = dot(rd, rd);
vec3 s0_r0 = r0 - s0;
float b = 2.0 * dot(rd, s0_r0);
float c = dot(s0_r0, s0_r0) - (sR * sR);
float delta = b * b - 4.0*a*c;
if (delta < 0.0 || a == 0.0) {
return -1.0;
}
float sol0 = (-b - sqrt(delta)) / (2.0*a);
float sol1 = (-b + sqrt(delta)) / (2.0*a);
if (sol0 < 0.0 && sol1 < 0.0) {
return -1.0;
}
if (sol0 < 0.0) {
return max(0.0, sol1);
} else if (sol1 < 0.0) {
return max(0.0, sol0);
}
if (farthest) {
return max(0.0, max(sol0, sol1));
} else {
return max(0.0, min(sol0, sol1));
}
}
void uvToLutTransmittanceParams (out float viewHeight, out float viewZenithCosAngle, in vec2 uv) {
float x_mu = uv.x;
float x_r = uv.y;
float H = sqrt(uR1 * uR1 - uRPlanet * uRPlanet);
float rho = H * x_r;
viewHeight = sqrt(rho * rho + uRPlanet * uRPlanet);
float d_min = uR1 - viewHeight;
float d_max = rho + H;
float d = d_min + x_mu * (d_max - d_min);
viewZenithCosAngle = d == 0.0 ? 1.0f : (H * H - rho * rho - d * d) / (2.0 * viewHeight * d);
viewZenithCosAngle = clamp(viewZenithCosAngle, -1.0, 1.0);
}
ParticipatingMedia getSkyParticipatingMedia(const vec3 samplePos, const float RAYLEIGH_EXP_SCALE, const float MIE_EXP_SCALE) {
float sampleAltitude = length(samplePos) - uRPlanet;
float rayleightDensity = exp(-sampleAltitude * RAYLEIGH_EXP_SCALE);
float mieDensity = exp(-sampleAltitude * MIE_EXP_SCALE);
float ozoneDensity = clamp(sampleAltitude < OZONE_ABSORBTION_LAYER_WIDTH ? OZONE_LINEAR_TERM0 * sampleAltitude + OZONE_CONSTANT_TERM0 : OZONE_LINEAR_TERM1 * sampleAltitude + OZONE_CONSTANT_TERM1, 0., 1.);
vec3 mieAbsorbtion = uMieAbsorbtion * mieDensity;
vec3 mieScattering = uMieScattering * mieDensity;
vec3 rayleighScattering = uSkyRayleighScattering * uSkyRayleighScatteringMul * rayleightDensity;
vec3 ozoneAbsorbtion = OZONE_ABSORBTION * ozoneDensity * uSkyAbsorptionMul;
vec3 sigmaScattering = mieScattering + rayleighScattering;
vec3 sigmaAbsorption = mieAbsorbtion + ozoneAbsorbtion;
vec3 sigmaExtinction = max(vec3(.000000001), sigmaAbsorption + sigmaScattering);
return ParticipatingMedia(rayleighScattering, mieScattering, sigmaScattering, sigmaExtinction);
}
ShadowMarchData marchSkyLayer (vec3 marchOrigin, vec3 rayDir, float marchDist, float steps) {
vec3 samplePos;
vec3 nearSample;
vec3 farSample;
vec3 sigmaExtinction;
vec3 opticalDepth = vec3(0.);
float stepSize = marchDist / steps;
// float depth = stepSize * n1rand(vTexCoord.xy) + .001;
float depth = .001;
float RAYLEIGH_EXP_SCALE = 1. / uRayleighScaleDiv;
float MIE_EXP_SCALE = 1. / uMieScaleDiv;
while (depth < marchDist) {
samplePos = marchOrigin + rayDir * depth;
sigmaExtinction = getSkyParticipatingMedia(samplePos, RAYLEIGH_EXP_SCALE, MIE_EXP_SCALE).extinction;
opticalDepth += sigmaExtinction * stepSize;
depth += stepSize;
}
// nearSample = marchOrigin + rayDir * marchDist;
nearSample = marchOrigin;
farSample = samplePos;
return ShadowMarchData(opticalDepth, nearSample, farSample);
}
vec4 marchAtmosphere (vec3 cameraPos, vec3 rayDir) {
float marchDist;
float R1Dist = raySphereIntersect(cameraPos, rayDir, PLANET_ORIGIN, uR1, false);
float RPlanetDist = raySphereIntersect(cameraPos, rayDir, PLANET_ORIGIN, uRPlanet, false);
if (R1Dist == -1.) {
return vec4(0.);
}
// marchOrigin = rayDir * R1Dist + cameraPos;
// if (RPlanetDist == -1.) {
// R1DistFar = raySphereIntersect(cameraPos, rayDir, PLANET_ORIGIN, uR1, true);
// marchDist = R1DistFar - R1Dist;
// } else {
// marchDist = RPlanetDist - R1Dist;
// }
if (RPlanetDist == -1.) {
marchDist = R1Dist;
} else {
marchDist = min(R1Dist, RPlanetDist);
}
ShadowMarchData skyLayer = marchSkyLayer(cameraPos, rayDir, marchDist, uMarchSamples);
return vec4(skyLayer.opticalDepth, 1.);
}
void main () {
// vec3 cameraPos = normalize(uLightPos) * (uR1 + .1) + vec3(0.);
// vec3 cameraOffset = (uShadowMapViewMat * vec4((vTexCoord * 2. - 1.) * uR1, 0., 0.)).xyz;
// cameraPos += cameraOffset;
// vec3 rayDir = (uShadowMapViewMat * vec4(0., 0., -1., 0.)).xyz;
vec2 uv = vec2(vTexCoord.x, 1. - vTexCoord.y);
uv = vTexCoord;
float viewHeight;
float viewZenithCosAngle;
uvToLutTransmittanceParams(viewHeight, viewZenithCosAngle, uv);
vec3 cameraPos = vec3(0., 0., viewHeight);
vec3 rayDir = vec3(0., sqrt(1. - viewZenithCosAngle * viewZenithCosAngle), viewZenithCosAngle);
color = marchAtmosphere(cameraPos, rayDir);
// color = vec4(uv, 0., 1.);
}