-
Notifications
You must be signed in to change notification settings - Fork 85
/
transformer.py
588 lines (481 loc) · 23.4 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
"""
Check my blog post on attention and transformer:
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
Implementations that helped me:
https://github.com/Kyubyong/transformer/
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py
http://nlp.seas.harvard.edu/2018/04/01/attention.html
Author: Lilian Weng (lilian.wengweng@gmail.com)
http://lilianweng.github.io/lil-log
Oct 2018
"""
import numpy as np
import tensorflow as tf
import tensorflow.contrib as tc
import json
import os
from utils import BaseModelMixin, REPO_ROOT
from nltk.translate.bleu_score import corpus_bleu, SmoothingFunction
from data import recover_sentence, START_ID, PAD_ID
class Transformer(BaseModelMixin):
"""
See the architecture spec of Transformer in:
Vaswani et al. Attention is All You Need. NIPS 2017.
"""
def __init__(self, num_heads=8, d_model=512, d_ff=2048, num_enc_layers=6, num_dec_layers=6,
drop_rate=0.1, warmup_steps=400, pos_encoding_type='sinusoid',
ls_epsilon=0.1, use_label_smoothing=True,
model_name='transformer', tf_sess_config=None, **kwargs):
"""
Args:
num_heads (int): number of heads in multi-head attention unit.
d_model (int): dimension of embedding size and the model data flow.
d_ff (int): dimension of the feed-forward layer.
num_enc_layers (int): number of encoder layers in the encoder.
num_dec_layers (int): number of decoder layers in the decoder.
drop_rate (float): drop rate in the dropout layer.
warmup_steps (int)
pos_encoding_type (str): type of positional encoding, 'sinusoid' or 'embedding'.
ls_epsilon (float): epsilon in the label smoothing function.
use_label_smoothing (bool): whether use label smoothing for the truth target.
model_name (str):
tf_sess_config (dict): dict config used when creating a tf.session.
"""
assert d_model % num_heads == 0
assert pos_encoding_type in ('sinusoid', 'embedding')
super().__init__(model_name, tf_sess_config=tf_sess_config)
self.h = num_heads
self.d_model = d_model
self.d_ff = d_ff
self.num_enc_layers = num_enc_layers
self.num_dec_layers = num_dec_layers
# Dropout regularization: added in every sublayer before layer_norm(...) and
# applied to embedding + positional encoding.
self.drop_rate = drop_rate
# Label smoothing epsilon
self.ls_epsilon = ls_epsilon
self.use_label_smoothing = use_label_smoothing
self.pos_encoding_type = pos_encoding_type
# For computing the learning rate
self.warmup_steps = warmup_steps
self.config = dict(
num_heads=self.h,
d_model=self.d_model,
d_ff=self.d_ff,
num_enc_layers=self.num_enc_layers,
num_dec_layers=self.num_dec_layers,
drop_rate=self.drop_rate,
warmup_steps=self.warmup_steps,
ls_epsilon=self.ls_epsilon,
use_label_smoothing=self.use_label_smoothing,
pos_encoding_type=self.pos_encoding_type,
model_name=self.model_name,
tf_sess_config=self.tf_sess_config,
)
# The following variables are inputs for build_model().
self._input_id2word = None
self._target_id2word = None
self._pad_id = 0
# The following variables will be constructed in build_model().
self._learning_rate = None
self._is_training = None
self._raw_input = None
self._raw_target = None
self._output = None
self._accuracy = None
self._loss = None
self._train_op = None
self._is_init = False
self.step = 0 # training step.
def build_model(self, dataset_name, input_id2word, target_id2word,
pad_id=PAD_ID, is_training=True, **train_params):
"""
Args:
dataset_name (str): name of the training dataset.
input_id2word (list): list of source words and the order matches ohe vectors.
target_id2word (list): list of target words and the order matches ohe vectors.
pad_id (int): the id of '<pad>' symbol.
is_training (bool)
train_params (dict): keys include 'lr', 'batch_size', and 'seq_len'.
"""
assert input_id2word[pad_id] == '<pad>'
assert target_id2word[pad_id] == '<pad>'
self.config.update(dict(
dataset=dataset_name,
input_id2word=input_id2word,
target_id2word=target_id2word,
pad_id=pad_id,
train_params=train_params,
))
batch_size = train_params.get('batch_size', 32)
seq_len = train_params.get('seq_len', 20)
self._input_id2word = input_id2word
self._target_id2word = target_id2word
self._pad_id = np.int32(pad_id)
input_vocab = len(input_id2word)
target_vocab = len(target_id2word)
with tf.variable_scope(self.model_name):
self._learning_rate = tf.placeholder(tf.float32, shape=None, name='learning_rate')
self._is_training = tf.placeholder_with_default(
is_training, shape=None, name="is_training")
self._raw_input = tf.placeholder(
tf.int32, shape=[batch_size, seq_len + 1], name='raw_input')
self._raw_target = tf.placeholder(
tf.int32, shape=[batch_size, seq_len + 1], name='raw_target')
# Add the offset on the input and target sentences.
# For the input we remove the starting <s> to keep the seq len consistent.
enc_inp = self._raw_input[:, 1:]
# For the decoder input, we remove the last element, as no more future prediction
# is gonna be made based on it.
dec_inp = self._raw_target[:, :-1] # starts with <s>
dec_target = self._raw_target[:, 1:] # starts with the first word
dec_target_ohe = tf.one_hot(dec_target, depth=target_vocab)
if self.use_label_smoothing:
dec_target_ohe = self.label_smoothing(dec_target_ohe)
# The input mask only hides the <pad> symbol.
input_mask = self.construct_padding_mask(enc_inp)
# The target mask hides both <pad> and future words.
target_mask = self.construct_padding_mask(dec_inp)
target_mask *= self.construct_autoregressive_mask(dec_inp)
# Input embedding + positional encoding
inp_embed = self.preprocess(enc_inp, input_vocab, "input_preprocess")
enc_out = self.encoder(inp_embed, input_mask)
# Target embedding + positional encoding
dec_inp_embed = self.preprocess(dec_inp, target_vocab, "target_preprocess")
dec_out = self.decoder(dec_inp_embed, enc_out, input_mask, target_mask)
# Make the prediction out of the decoder output.
logits = tf.layers.dense(dec_out, target_vocab) # [batch, target_vocab]
self._output = tf.argmax(logits, axis=-1, output_type=tf.int32)
target_not_pad = tf.cast(tf.not_equal(dec_target, self._pad_id), tf.float32)
self._accuracy = tf.reduce_sum(
tf.cast(tf.equal(self._output, dec_target), tf.float32) * target_not_pad /
tf.cast(tf.reduce_sum(target_not_pad), tf.float32)
)
self._loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=dec_target_ohe))
optim = tf.train.AdamOptimizer(learning_rate=self._learning_rate,
beta1=0.9, beta2=0.98, epsilon=1e-9)
self._train_op = optim.minimize(self._loss)
with tf.variable_scope(self.model_name + '_summary'):
tf.summary.scalar('loss', self._loss)
tf.summary.scalar('accuracy', self._accuracy)
self.merged_summary = tf.summary.merge_all()
@classmethod
def load_model(cls, model_name, is_training=False):
"""Returns a Transformer object, with checkpoint loaded.
"""
config_path = os.path.join(REPO_ROOT, 'checkpoints', model_name, 'model.config.json')
with open(config_path, 'r') as fin:
cfg = json.load(fin)
model = cls(**cfg)
model.build_model(cfg['dataset'], cfg['input_id2word'], cfg['target_id2word'],
pad_id=cfg['pad_id'], is_training=is_training,
**cfg['train_params'])
# model.sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
model.load_checkpoint()
return model
def embedding(self, inp, vocab_size, zero_pad=True):
"""When the `zero_pad` flag is on, the first row in the embedding lookup table is
fixed to be an all-zero vector, corresponding to the '<pad>' symbol."""
embed_size = self.d_model
embed_lookup = tf.get_variable("embed_lookup", [vocab_size, embed_size], tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
if zero_pad:
assert self._pad_id == 0
embed_lookup = tf.concat((tf.zeros(shape=[1, self.d_model]), embed_lookup[1:, :]), 0)
out = tf.nn.embedding_lookup(embed_lookup, inp)
return out
def _positional_encoding_embedding(self, inp):
batch_size, seq_len = inp.shape.as_list()
with tf.variable_scope('positional_embedding'):
# Copy [0, 1, ..., `inp_size`] by `batch_size` times => matrix [batch, seq_len]
pos_ind = tf.tile(tf.expand_dims(tf.range(seq_len), 0), [batch_size, 1])
return self.embedding(pos_ind, seq_len, zero_pad=False) # [batch, seq_len, d_model]
def _positional_encoding_sinusoid(self, inp):
"""
PE(pos, 2i) = sin(pos / 10000^{2i/d_model})
PE(pos, 2i+1) = cos(pos / 10000^{2i/d_model})
"""
batch, seq_len = inp.shape.as_list()
with tf.variable_scope('positional_sinusoid'):
# Copy [0, 1, ..., `inp_size`] by `batch_size` times => matrix [batch, seq_len]
pos_ind = tf.tile(tf.expand_dims(tf.range(seq_len), 0), [batch, 1])
# Compute the arguments for sin and cos: pos / 10000^{2i/d_model})
# Each dimension is sin/cos wave, as a function of the position.
pos_enc = np.array([
[pos / np.power(10000., 2. * (i // 2) / self.d_model) for i in range(self.d_model)]
for pos in range(seq_len)
]) # [seq_len, d_model]
# Apply the cosine to even columns and sin to odds.
pos_enc[:, 0::2] = np.sin(pos_enc[:, 0::2]) # dim 2i
pos_enc[:, 1::2] = np.cos(pos_enc[:, 1::2]) # dim 2i+1
# Convert to a tensor
lookup_table = tf.convert_to_tensor(pos_enc, dtype=tf.float32) # [seq_len, d_model]
if True:
lookup_table = tf.concat((tf.zeros(shape=[1, self.d_model]), lookup_table[1:, :]),
0)
out = tf.nn.embedding_lookup(lookup_table, pos_ind) # [batch, seq_len, d_model]
return out
def positional_encoding(self, inp):
if self.pos_encoding_type == 'sinusoid':
pos_enc = self._positional_encoding_sinusoid(inp)
else:
pos_enc = self._positional_encoding_embedding(inp)
return pos_enc
def preprocess(self, inp, inp_vocab, scope):
# Pre-processing: embedding + positional encoding
# Output shape: [batch, seq_len, d_model]
with tf.variable_scope(scope):
out = self.embedding(inp, inp_vocab, zero_pad=True) + self.positional_encoding(inp)
out = tf.layers.dropout(out, rate=self.drop_rate, training=self._is_training)
return out
def layer_norm(self, inp):
return tc.layers.layer_norm(inp, center=True, scale=True)
def scaled_dot_product_attention(self, Q, K, V, mask=None):
"""
Args:
Q (tf.tensor): of shape (h * batch, q_size, d_model)
K (tf.tensor): of shape (h * batch, k_size, d_model)
V (tf.tensor): of shape (h * batch, k_size, d_model)
mask (tf.tensor): of shape (h * batch, q_size, k_size)
"""
d = self.d_model // self.h
assert d == Q.shape[-1] == K.shape[-1] == V.shape[-1]
out = tf.matmul(Q, tf.transpose(K, [0, 2, 1])) # [h*batch, q_size, k_size]
out = out / tf.sqrt(tf.cast(d, tf.float32)) # scaled by sqrt(d_k)
if mask is not None:
# masking out (0.0) => setting to -inf.
out = tf.multiply(out, mask) + (1.0 - mask) * (-1e10)
out = tf.nn.softmax(out) # [h * batch, q_size, k_size]
out = tf.layers.dropout(out, training=self._is_training)
out = tf.matmul(out, V) # [h * batch, q_size, d_model]
return out
def multihead_attention(self, query, memory=None, mask=None, scope='attn'):
"""
Args:
query (tf.tensor): of shape (batch, q_size, d_model)
memory (tf.tensor): of shape (batch, m_size, d_model)
mask (tf.tensor): shape (batch, q_size, k_size)
Returns:h
a tensor of shape (bs, q_size, d_model)
"""
if memory is None:
memory = query
with tf.variable_scope(scope):
# Linear project to d_model dimension: [batch, q_size/k_size, d_model]
Q = tf.layers.dense(query, self.d_model, activation=tf.nn.relu)
K = tf.layers.dense(memory, self.d_model, activation=tf.nn.relu)
V = tf.layers.dense(memory, self.d_model, activation=tf.nn.relu)
# Split the matrix to multiple heads and then concatenate to have a larger
# batch size: [h*batch, q_size/k_size, d_model/num_heads]
Q_split = tf.concat(tf.split(Q, self.h, axis=2), axis=0)
K_split = tf.concat(tf.split(K, self.h, axis=2), axis=0)
V_split = tf.concat(tf.split(V, self.h, axis=2), axis=0)
mask_split = tf.tile(mask, [self.h, 1, 1])
# Apply scaled dot product attention
out = self.scaled_dot_product_attention(Q_split, K_split, V_split, mask=mask_split)
# Merge the multi-head back to the original shape
out = tf.concat(tf.split(out, self.h, axis=0), axis=2) # [bs, q_size, d_model]
# The final linear layer and dropout.
# out = tf.layers.dense(out, self.d_model)
# out = tf.layers.dropout(out, rate=self.drop_rate, training=self._is_training)
return out
def feed_forwad(self, inp, scope='ff'):
"""
Position-wise fully connected feed-forward network, applied to each position
separately and identically. It can be implemented as (linear + ReLU + linear) or
(conv1d + ReLU + conv1d).
Args:
inp (tf.tensor): shape [batch, length, d_model]
"""
out = inp
with tf.variable_scope(scope):
# out = tf.layers.dense(out, self.d_ff, activation=tf.nn.relu)
# out = tf.layers.dropout(out, rate=self.drop_rate, training=self._is_training)
# out = tf.layers.dense(out, self.d_model, activation=None)
# by default, use_bias=True
out = tf.layers.conv1d(out, filters=self.d_ff, kernel_size=1, activation=tf.nn.relu)
out = tf.layers.conv1d(out, filters=self.d_model, kernel_size=1)
return out
def construct_padding_mask(self, inp):
"""
Args: Original input of word ids, shape [batch, seq_len]
Returns: a mask of shape [batch, seq_len, seq_len], where <pad> is 0 and others are 1s.
"""
seq_len = inp.shape.as_list()[1]
mask = tf.cast(tf.not_equal(inp, self._pad_id), tf.float32) # mask '<pad>'
mask = tf.tile(tf.expand_dims(mask, 1), [1, seq_len, 1])
return mask
def construct_autoregressive_mask(self, target):
"""
Args: Original target of word ids, shape [batch, seq_len]
Returns: a mask of shape [batch, seq_len, seq_len].
"""
batch_size, seq_len = target.shape.as_list()
tri_matrix = np.zeros((seq_len, seq_len))
tri_matrix[np.tril_indices(seq_len)] = 1
mask = tf.convert_to_tensor(tri_matrix, dtype=tf.float32)
masks = tf.tile(tf.expand_dims(mask, 0), [batch_size, 1, 1]) # copies
return masks
def encoder_layer(self, inp, input_mask, scope):
"""
Args:
inp: tf.tensor of shape (batch, seq_len, embed_size)
input_mask: tf.tensor of shape (batch, seq_len, seq_len)
"""
out = inp
with tf.variable_scope(scope):
# One multi-head attention + one feed-forword
out = self.layer_norm(out + self.multihead_attention(out, mask=input_mask))
out = self.layer_norm(out + self.feed_forwad(out))
return out
def encoder(self, inp, input_mask, scope='encoder'):
"""
Args:
inp (tf.tensor): shape (batch, seq_len, embed_size)
input_mask (tf.tensor): shape (batch, seq_len, seq_len)
scope (str): name of the variable scope.
"""
out = inp # now, (batch, seq_len, embed_size)
with tf.variable_scope(scope):
for i in range(self.num_enc_layers):
out = self.encoder_layer(out, input_mask, f'enc_{i}')
return out
def decoder_layer(self, target, enc_out, input_mask, target_mask, scope):
out = target
with tf.variable_scope(scope):
out = self.layer_norm(out + self.multihead_attention(
out, mask=target_mask, scope='self_attn'))
out = self.layer_norm(out + self.multihead_attention(
out, memory=enc_out, mask=input_mask))
out = self.layer_norm(out + self.feed_forwad(out))
return out
def decoder(self, target, enc_out, input_mask, target_mask, scope='decoder'):
out = target
with tf.variable_scope(scope):
for i in range(self.num_enc_layers):
out = self.decoder_layer(out, enc_out, input_mask, target_mask, f'dec_{i}')
return out
def label_smoothing(self, inp):
"""
From the paper: "... employed label smoothing of epsilon = 0.1. This hurts perplexity,
as the model learns to be more unsure, but improves accuracy and BLEU score."
Args:
inp (tf.tensor): one-hot encoding vectors, [batch, seq_len, vocab_size]
"""
vocab_size = inp.shape.as_list()[-1]
smoothed = (1.0 - self.ls_epsilon) * inp + (self.ls_epsilon / vocab_size)
return smoothed
def init(self):
"""Call .init() before training starts.
- Initialize the variables.
- Save the model config into json file.
"""
self.sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
self._is_init = True
self.step = 0
self.save_checkpoint() # make sure saver is created.
# Save the model config into a json.
config_path = os.path.join(self.checkpoint_dir, 'model.config.json')
with open(config_path, 'w') as fout:
json.dump(self.config, fout)
def done(self):
"""Call .done() after training is complete.
"""
self.writer.close()
self.save_checkpoint() # Final checkpoint.
def train(self, input_ids, target_ids):
"""
One train step with one mini-batch.
Args:
input_ids (np.array): same shape as raw input placeholder.
target_ids (np.array): same shape as raw target placeholder.
Returns:
A dict of some meta information, including 'loss'.
"""
assert self._is_init, "Please call .init() before training starts."
self.step += 1
lr = np.power(self.d_model, -0.5) * min(
np.power(self.step, -0.5),
self.step * np.power(self.warmup_steps, -1.5)
)
train_loss, train_accu, summary, _ = self.sess.run(
[self._loss, self._accuracy, self.merged_summary, self.train_op],
feed_dict={
self._learning_rate: lr,
self.raw_input_ph: input_ids.astype(np.int32),
self.raw_target_ph: target_ids.astype(np.int32),
self.is_training_ph: True,
})
self.writer.add_summary(summary, global_step=self.step)
if self.step % 10000 == 0:
# Save the model checkpoint every 1000 steps.
self.save_checkpoint(step=self.step)
return {'train_loss': train_loss,
'train_accuracy': train_accu,
'learning_rate': lr,
'step': self.step}
def predict(self, input_ids):
"""
Make predict in an autoregressive way.
Args:
input_ids (np.array): same shape as raw input placeholder.
Returns:
a np.array of the same shape as the raw target placeholder.
"""
assert list(input_ids.shape) == self.raw_input_ph.shape.as_list()
batch_size, inp_seq_len = self.raw_input_ph.shape.as_list()
input_ids = input_ids.astype(np.int32)
pred_ids = np.zeros(input_ids.shape, dtype=np.int32)
pred_ids[:, 0] = START_ID
# Predict one output a time autoregressively.
for i in range(1, inp_seq_len):
# The decoder does not output <s>
next_pred = self.sess.run(self._output, feed_dict={
self.raw_input_ph: input_ids,
self.raw_target_ph: pred_ids,
self.is_training_ph: False,
})
# Only update the i-th column in one step.
pred_ids[:, i] = next_pred[:, i - 1]
# print(f"i={i}", pred_ids)
return pred_ids
def evaluate(self, input_ids, target_ids):
"""Make a prediction and compute BLEU score.
"""
pred_ids = self.predict(input_ids)
refs = []
hypos = []
for truth, pred in zip(target_ids, pred_ids):
truth_sent = recover_sentence(truth, self._target_id2word)
pred_sent = recover_sentence(pred, self._target_id2word)
refs.append([truth_sent])
hypos.append(pred_sent)
# Print the last pair for fun.
source_sent = recover_sentence(input_ids[-1], self._input_id2word)
print("[Source]", source_sent)
print("[Truth]", truth_sent)
print("[Translated]", pred_sent)
smoothie = SmoothingFunction().method4
bleu_score = corpus_bleu(refs, hypos, smoothing_function=smoothie)
return {'bleu_score': bleu_score * 100.}
# ============================= Utils ===============================
def _check_variable(self, v, name):
if v is None:
raise ValueError(f"Call build_model() to initialize {name}.")
return v
@property
def raw_input_ph(self):
return self._check_variable(self._raw_input, 'input placeholder')
@property
def raw_target_ph(self):
return self._check_variable(self._raw_target, 'target placeholder')
@property
def is_training_ph(self):
return self._check_variable(self._is_training, 'is_training placeholder')
@property
def train_op(self):
return self._check_variable(self._train_op, 'train_op')
@property
def loss(self):
return self._check_variable(self._loss, 'loss')