-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_utils.py
114 lines (101 loc) · 3.44 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import numpy as np
import torch.optim as optim
from models.feedforward import TreeGatePolicy
from models.transformer import BranchFormer, BranT
from utils import STATE_DIMS
def get_scheduler(args, optimizer):
# specify a learning rate scheduler
if args.lr_decay_schedule:
if args.noam:
from noam import NoamLR
scheduler = NoamLR(optimizer, args.warm_epochs)
else:
lr_decay_schedule = args.lr_decay_schedule
lr_decay_factor = args.lr_decay_factor
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, lr_decay_schedule, lr_decay_factor)
use_scheduler = True
else:
use_scheduler = False
return scheduler, use_scheduler
def get_optimizer(args, policy):
if args.opt == 'adam':
optimizer = optim.Adam(
policy.parameters(),
lr=args.lr,
betas=(args.momentum, 0.999),
weight_decay=args.weight_decay
)
eps = np.finfo(np.float32).eps.item()
elif args.opt == 'adamw':
optimizer = optim.AdamW(
policy.parameters(),
lr=args.lr,
betas=(args.momentum, 0.999),
weight_decay=args.weight_decay
)
else:
raise ValueError('A valid optimizer should be set.')
return optimizer
def get_dataset(args, dataset_h5):
train_h5 = dataset_h5(
h5_file=args.train_h5_path,
node_dim=STATE_DIMS['node_dim'],
mip_dim=STATE_DIMS['mip_dim'],
var_dim=STATE_DIMS['var_dim']
)
val_h5 = dataset_h5(
h5_file=args.val_h5_path,
node_dim=STATE_DIMS['node_dim'],
mip_dim=STATE_DIMS['mip_dim'],
var_dim=STATE_DIMS['var_dim']
)
test_h5 = dataset_h5(
h5_file=args.test_h5_path,
node_dim=STATE_DIMS['node_dim'],
mip_dim=STATE_DIMS['mip_dim'],
var_dim=STATE_DIMS['var_dim']
)
return train_h5, val_h5, test_h5
def get_policy(args):
# setup the policy
if args.policy_type == 'TreeGatePolicy':
policy = TreeGatePolicy(
var_dim=STATE_DIMS['var_dim'],
node_dim=STATE_DIMS['node_dim'],
mip_dim=STATE_DIMS['mip_dim'],
hidden_size=args.hidden_size,
depth=args.depth,
dropout=args.dropout,
dim_reduce_factor=args.dim_reduce_factor,
infimum=args.infimum,
norm=args.norm,
)
policy_name = 'TreeGatePolicy'
elif args.policy_type == 'TBranT':
policy = BranchFormer(
var_dim=STATE_DIMS['var_dim'],
node_dim=STATE_DIMS['node_dim'],
mip_dim=STATE_DIMS['mip_dim'],
hidden_size=args.hidden_size,
dim_feedforward=args.hidden_size,
nhead=args.head_num,
num_encoder_layers=args.layer_num,
tree_gate=args.tree_gate,
graph=args.graph,
)
policy_name = 'Transformer'
elif args.policy_type == 'BranT':
policy = BranT(
var_dim=STATE_DIMS['var_dim'],
node_dim=STATE_DIMS['node_dim'],
mip_dim=STATE_DIMS['mip_dim'],
hidden_size=args.hidden_size,
dim_feedforward=args.hidden_size,
nhead=args.head_num,
num_encoder_layers=args.layer_num,
tree_gate=args.tree_gate,
)
policy_name = 'Transformer'
else:
raise ValueError('A valid policy should be set.')
return policy, policy_name